Site visits to Wastewater Treatment Plants

Facility tours of wastewater treatment plants are available except weekends, holidays, and the year-end and New Year Holidays.

<Contact for arranging site visits>

Wastewater treatment plants in the 23 wards /Telephone:03(3241)0944

Hours:9:00 - 17:00 (weekdays only)

Wastewater treatment plants in Tama area: Please contact each wastewater treatment plant.

The Tokyo Metropolitan Government Bureau of Sewerage is conducting the No Grease, No Blockages, Comfortable! Sewers Campaign.

Wipe off

Wipe off grease stains from pots and dishes before washing them.

Absorb

Absorb any remaining oil with newspaper or similar material, or solidify the oil before disposing of it as combustible waste.

Use up

Use any leftover oil in other dishes and try to use it all up.

We distribute free manhole cards.

O Zenigame Place (Public Relations and Service Section, General Affairs Division, Bureau of Sewerage, TMG)

03-5320-6515

O Tokyo Sewerage Museum" Rainbow"

03-5564-2458

O Tokyo Tourist Information Center Keisei Ueno (Public Relations and Service Section, General Affairs Division, Bureau of Sewerage, TMG) 03

03-5320-6515

O Former Mikawashima Sewage Disposal Plant

03-6458-3940

O Tokyo Tourist Information Center Tama (Regional Sewerage Office, Bureau of Sewerage, TMG)

042-527-4281

Zenigame Place

Tokyo Sewerage Museum "Rainbow"

Tokyo Tourist Information Center Keisei Ueno

Former Mikawashima Sewage Disposal Plant

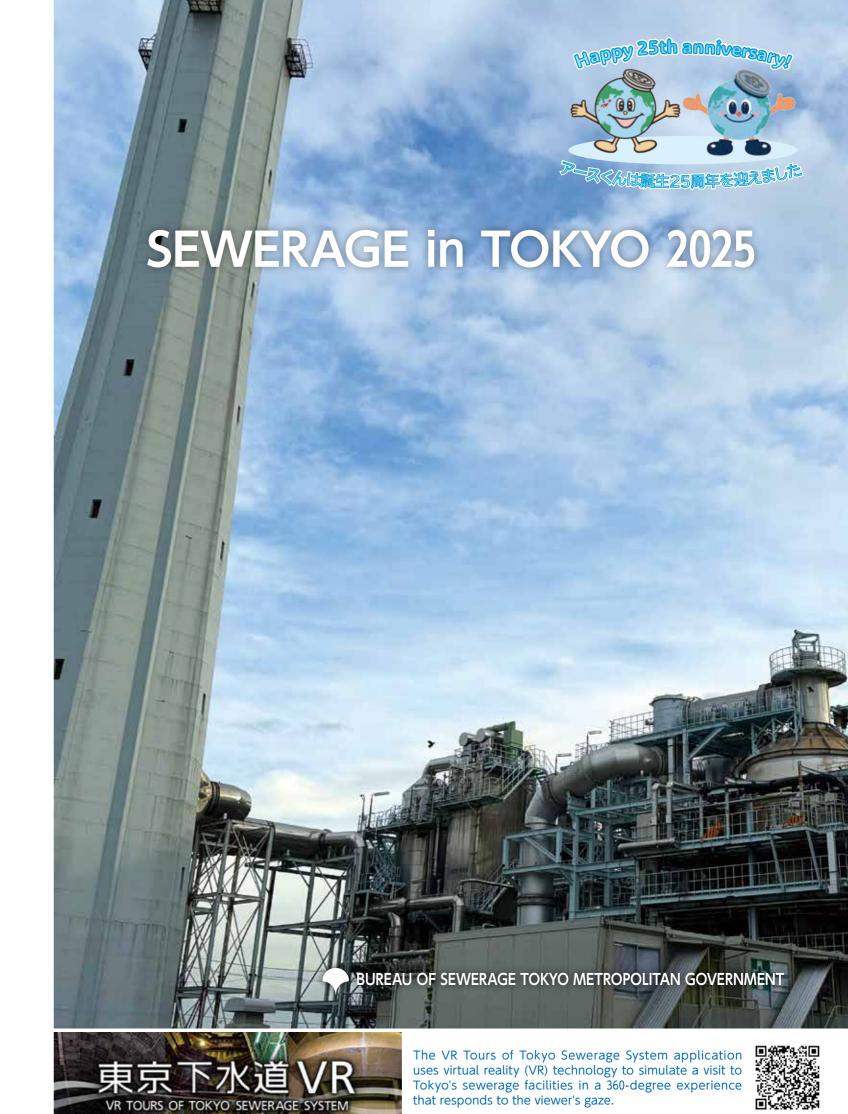
Tokyo Tourist Information Center Tama

What is a manhole card?

It is a collection card created by Gesuido Koho Platform (Sewerage Public Relations Platform, GKP) in collaboration with local municipalities.

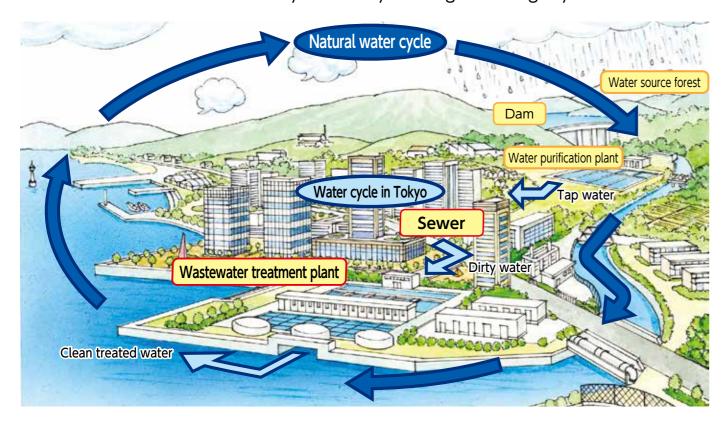
They are distributed for the purpose of making people interested in sewerage and enjoy collecting cards.

東京都の下水道 2025


令和7年11月発行

編集・発行 東京都下水道局総務部広報サービス課 所 在 地 東京都新宿区西新宿二丁目8番1号

話 03-5320-6515


令和7年度 規格表第4類 登録第8号

Sewerage in the Water Cycle

We contribute to the water cycle in Tokyo through sewerage system.

Contents

1	The Role of Sewerage in Tokyo	1
2	Sewerage System ·····	2~ 3
3	Sewerage in the Ward Area	4∼ 5
4	Sewerage in Tama Area	6 ∼ 7
5	Statistics of Sewerage in Tokyo	8 ∼ 9
6	Management Plan 2021 ······	10
7	Principal Measures for the Ward Area	11~19
8	Principal Measures for Regional Sewerage System ······	20~24
9	Energy Management and Global Warming Countermeasures	25~27
10	Enhancement of Service Quality	28~31
11	Enhancement of Reliability	32~37
12	Living and Sewerage ·····	38~39
13	Finances ·····	40~42
14	History of Sewerage in Tokyo	43~44

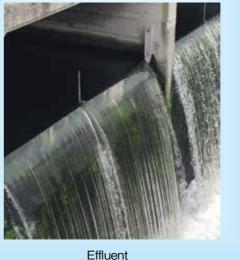
This is a character that was created on September 10, 2000, aiming at further deepening customer's interest in and understanding of sewage works and boosting the image of Bureau of Sewerage, Tokyo Metropolitan Government. To mark its 25th anniversary, it was redesigned on September 10, which is "Sewerage Day".

While maintaining the essence of the original design, it has evolved into a more approachable presence through modern adaptations in expression and color palette.

The website of Bureau of Sewerage

https://www.gesui.metro.tokyo.lg.jp/

Cover photo taken at Tobu Sludge Plant (Koto Ward)


1 The Role of Sewerage in Tokyo

Sewerage plays a vital role in ensuring a safe and comfortable living environment and creating a good water cycle. We, "Bureau of Sewerage, Tokyo Metropolitan Government (TMG)", treat wastewater from daily lives or urban activities and return it to rivers and the sea. In addition, we drain stormwater immediately from roads or residential areas.

Improvement of a Living Environment by Treating Wastewater

We treat wastewater from houses and factories and ensure a comfortable living environment.

Flood Prevention by Draining Stormwater

We protect the city from flooding by draining* stormwater immediately from roads or residential

*Drained stormwater is discharged into rivers and the sea or stored in storage facilities.

A drained road

Water Quality Control in Public Water Bodies

We improve and control the water quality of rivers and the sea by treating and discharging the wastewater.

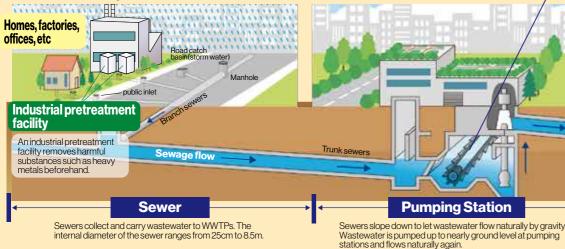
Revived Sumida River

Our New Role

Now we play a new role in creating a favorable urban environment. We effectively utilize the resources and energy generated by sewerage, such as reclaimed water and sewerage heat. We also utilize roof floor spaces of our facilities.

Shinagawa Season Terrace constructed in the roof floor space of Shibaura Water Reclamation Center

2 Sewerage System



Sewerage system is mainly composed of 3 components*: sewers, pumping stations and wastewater treatment plants (WWTPs)*. Sewers collect and carry wastewater.

Pumping stations pump wastewater to avoid sewers getting deeper. WWTPs treat and clean wastewater.

We perform inspection, cleaning and maintenance every day to keep them working properly.

*WWTPs in Tokyo are called "Water Reclamation Centers".

WWTP

becomes easy to settle

By treating wastewater and reviving it into clean water, the facilities discharge it into rivers and the sea.

Primary sedimentation tank Reaction tank

Organic matter in wastewater As wastewater flows in slowly is absorbed to activated through this tank for 2 to 3 hours. sludge, where microorganisms solids sink to the bottom. break it down. As microorganisms grow, activated sludge

Secondary sedimentation tank

As activated sludge formed in a reaction tank flows slowly in this tank for 3 to 4 hours, it is separated into

Rooftop park

Advanced wastewater treatment

We introduce following facilities to clean treated water even more.

Sand filter/Biologically active filter Removes residual suspended solids that remove completely.

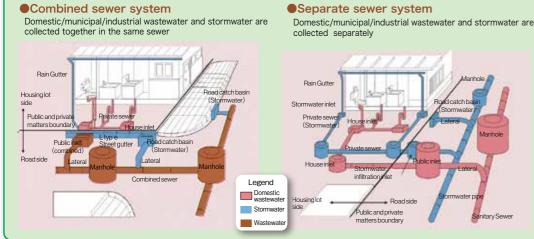
A₂O process Removes nitrogen and phosphorus efficiently in the reaction tank

Chlorination tank reated water is chlorinated other bacteria before

discharged into rivers and the sea.

Sludge(to the Sludge treatment facilties)

Entrance to the Sewer


House Drain

Private sewers in residential areas of our customers are called house drains. The connection method to the public sewer system depends on the type of the system as shown in figures below. If you are planning to establish, expand or renovate your house drain, you are required to notify the sewerage administrator (the Director General of Bureau of Sewerage in the 23 wards area). In Tama area, please contact your local municipality.

Types of Sewer Systems (Combined and Separate Sewer System)

Wastewater includes domestic wastewater from houses, municipal wastewater from communities, industrial wastewater from factories and stormwater. There are two types of sewer systems: combined sewer system and separate sewer system.

In combined sewer system, domestic/municipal/industrial wastewater and stormwater are collected and carried to WWTPs together in the same sewer. On the other hand, in separate sewer system, they are collected separately. Then domestic/municipal/industrial wastewater is carried to WWTPs, while stormwater is discharged directly into rivers and the sea.

3 Components of Sewerage

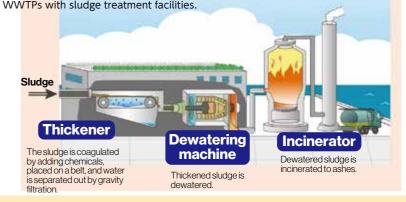
Sewer

Grit chamber

Wastewater flows into this

settled out

chamber first. Large objects are


removed, then sand and grit are

The pipes that convey sewage to WWTPs are sewer pipes. They are also referred to as "conduits." Sewage is collected through smaller sewer pipes (branch sewers) to larger sewer pipes (trunk sewers). The sewer network is stretched across Tokyo with total length of approximately 16,100 km in the 23 wards area. The common materials used are concrete, polyvinyl chloride (PVC), clay, etc. The internal diameter of the sewer ranges from 25cm to 8.5m.

Examples of microorganisms in the reaction tank

Sludge is thickened, dewatered and incinerated. Sludge treatment facilities Incineration ash will be recycled to the extent possible as raw materials including cement etc., and then the remaining one will be disposed as landfill

* If a WWTPs does not have sludge treatment facilities, it transports sludge to another WWTPs with sludge treatment facilities.

Pumping Station

to rivers and the sea immediately.

Sewers slope down to let wastewater flow naturally by gravity (gravity flow). Therefore, sewers get deeper and deeper in the ground. (A b o u t 5 0 m underground at the deepest.) Because it is difficult to lay sewers deep in the ground, wastewater is pumped up to nearly ground level at pumping stations and flows naturally again. In this way, wastewater flows to WWTPs by way of pumping stations. In addition, pumping stations play an important role of flood prevention in case of heavy rainfall by discharging stormwater from sewers

Wastewater Treatment Plant (WWTP)

parks for citizens.

WWTPs have facilities to treat wastewater and sludge. Wastewater is treated with a system of tanks and sludge is produced. The volume of wastewater treated in our 20 WWTPs is approximately 5.50 million cubic meters per day.

To treat a large volume of wastewater, we need extensive sites for WWTPs. We save and utilize spaces effectively by introducing two-layer sedimentation tanks or deeper reaction tanks, etc. In addition, we cooperate with wards and cities to turn roof floor spaces of WWTPs into

3 Sewerage in the Ward Area

Sewerage Service in the Ward Area

In Japan, cities, towns or villages are responsible for sewerage service. But in the 23 wards area, we, TMG, provide sewerage service on their behalf.

There are 13 WWTPs in 10 treatment districts. The volume of wastewater treated is 4.62 million cubic meters per day.

Sewerage Plan

Planned Population*	9,492,000
Planned Area*	56,591 hectares

^{*}Source: Regional Sewerage Service Master Plan decided in March 2025.

Ward Area Sewers (as of March 2025)

Total Length of Sewers	16,211,916m
Trunk Sewers	1,141,296m
Branch Sewers	15,080,620m
Number of Manholes	488,403
Number of Public Inlet	1,981,803

Pumping Stations

Number of Pumping Stations (April 1, 2025)	81	*
Volume of Pumped	Annually	765,322,290m ²
Wastewater in FY2024	Daily Average	2,096,773m ²

^{*}Excluding the Kuramae, Higashi-Ogu, and Seijo drainage control stations

Wastewater Treatment Plants

Number of Wastewater Treatment Plants (April 1, 2025)	1	3
Volume of Treated	Annually	1,687,948,910㎡
in FY2024	Daily Average	4,624,510㎡

4 Sewerage in Tama Area

Sewerage Service in Tama Area

In Tama area of Western Tokyo, there are several types of sewerage service: regional sewerage service, independent public sewerage service, etc.

In regional sewerage service, TMG, and local governments (26 cities, 3 towns and 1 village) cooperate to provide sewerage service. We construct and manage regional trunk sewers and wastewater treatment plants, while local governments are responsible for sewers from houses to regional trunk sewers.

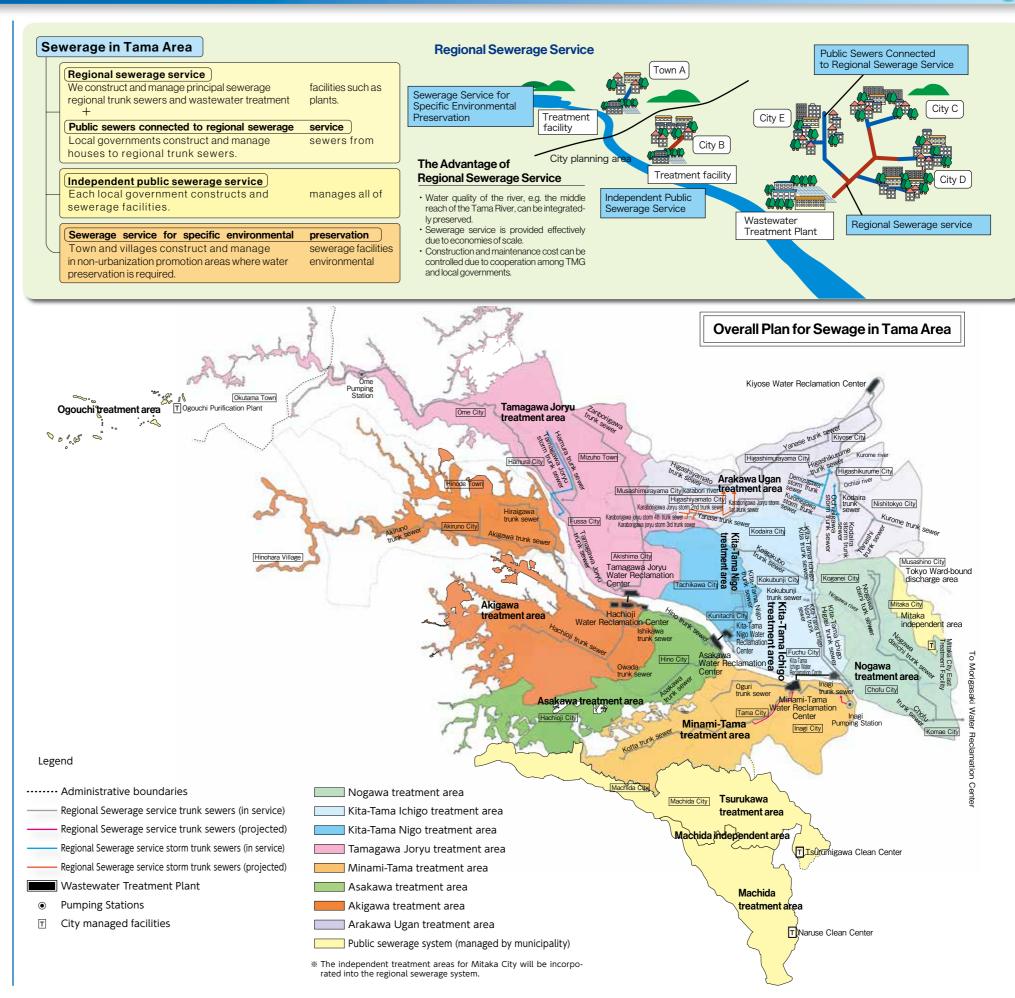
The volume of wastewater treated in our 7 WWTPs is 1.07 million cubic meters per day.

Regional Sewerage System Plan

Planned Population*	3,107,000
Planned Area*	48,962 hectares

^{*}Source: Regional Sewerage Service Master Plan decided in March 2025. Including Mitaka independent area.

Sewers* (End of the fiscal year 2024)


Total Length of Sewers	232,240m
Number of Manholes	1,235
Number of Connection Points to Regional Sewers	344

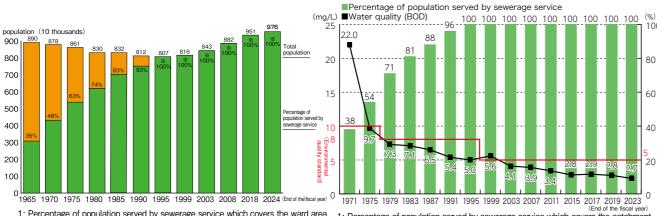
^{*}Managed by TMG

Pumping Stations and Wastewater Treatment Plants*

2	
7	
Annually Daily Average	391,608,780㎡ 1,072,910㎡
	,

^{*} Managed by TMG

^{**}Except for Nogawa treatment area


5 Statistics of Sewerage in Tokyo

The Ward Area

Total Population and Percentage of Population Served by Sewerage Service

Water Quality of the Sumida River and Percentage of Population Served by Sewerage Service

- 2: Total population is taken from statistics of Bureau of General Affairs
- 3: Percentage over 99.5% is considered as 100%

- 1: Percentage of population served by sewerage service which covers the catchment
- area of the Sumida River (Itabashi, Kita, Nerima ward)
 2: Water quality is the annual BOD value (BOD 75 percentile value) at
- the Odaihashi Bridge (Based on data served by Bureau of Environment)

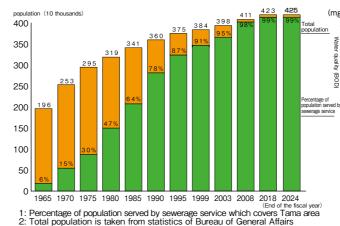
Average Water Quality of Wastewater Treatment Plants

(Unit:mg /L)

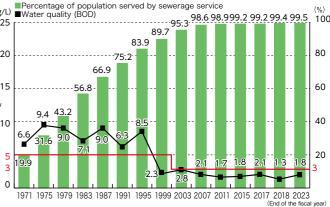
Parameter	Influent	Effluent	Effluent quality standards
BOD	150	6	25
COD	85	9	35(15)
Total nitrogen	31.9	11.3	30(20)
Total phosphorus	3.3	0.9	3.0 (1.0)

(Results in FY2024) Average value of 13 wastewater treatment plants. Values in brackets are effluent quality standards for wastewater treatment plants equipped with advanced wastewater treatment. *BOD and COD are indicators of water pollution (organic matter).

Statistics of Wastewater and Sludge Treatment(Ward Area)


(Results in FY2024)

Results	Wastewater	volume (㎡)	Sludge vo	lume (m³)	Dewatered slu	dge weight (t)	Incinerated sludge weight					
WWTP etc.	Annual	Daily average	Annual	Daily average	Annual	Daily average	Annual	Daily average				
Shibaura	222,981,040	610,910	Transported to Nanbu Sludge Plant(via Morigasaki)									
Mikawashima	155,503,670	426,040	Transported	Transported to Sunamachi								
Nakagawa	69,783,110	191,190	Transported	d to Kasai(vi	a Kosuge)							
Miyagi	69,665,300	190,860	2,844,430	7,790	51,258	140	51,258	140				
Sunamachi	165,953,790	454,670	0 1,062,160 2,910									
Tobu Sludge Plant			18,202,536	49,870	228,313 626		196,438	538				
Ariake	5,257,720	14,400	700 Transported to Sunamachi									
Kosuge	75,286,140	206,260	Transported	d to Kasai								
Kasai	107,719,990	295,120	11,946,620	32,220	125,252	410	149,901	410				
Ochiai	116,549,960	319,310	Transported	d to Sunama	ichi(via Miya	gi and Mika	washima)					
Nakano	21,996,550	60,260	Transported to Sunamachi(via Ochiai, Miyagi and Mikawashima)									
Ukima	54,179,990	148,440	Transported	d to Shingas	hi							
Shingashi	188,006,430	515,090	7,702,297 19,960 123,468 338 123,468									
Morigasaki	435,065,220	1,191,960	6,489,060 14,640 Transported to Nanbu Sludge Plant									
Nanbu Sludge Plant			15,039,890	40,940	372,782	1,021	372,782	1,021				
Total	1,687,948,910	4,624,510	65,650,747	168,330	901,073	2,468	869,191	2,380				


Note: Of the dewatered sludge generated, 33,875 tons/year is carbonized at the Tobu Sludge Plant's carbonization facility.

Tama Area

Total Population and Percentage of Population Served by Sewerage Service

Water Quality of the Tama River and Percentage of Population Served by Sewerage Service

- 1: Percentage of population served by sewerage service which covers the catchment
- area of the Tama River
 2: Water quality is the annual BOD value (BOD 75 percentile value) at

Percentage of Population Served by Sewerage Service for Individual Cities

10/	١

	Hachioji	Tachikawa	Musashino	Mitaka	Ome	Fuchu	Akishima	Chofu	Machida	Koganei	Kodaira	Hino	Higashi murayama	Kokubunji	Kunitachi	Fussa
Percentage of population served by sewerage service FY 2024	99	100	100	100	98	100	100	100	99	100	100	96	100	* 100	* 100	100
	Komae	Higash iyamato	Kiyose	Higashi kurume	Musashi murayama	Tama	Inagi	Hamura	Akiru- no	Nishitokyo	Mizuho	Hinode	Hinohara	Okutama	То	tal
Percentage of population served by sewerage service FY 2024	100	99	* 100	100	* 100	* 100	99	* 100	95	* 100	98	* 100	93	92	9	9

^{1:} Percentage over 99.5% is considered as 100%

*Water quality calculated from preliminary figures.

Average Water Quality of Wastewater Treatment Plants

(Unit:mg /L)

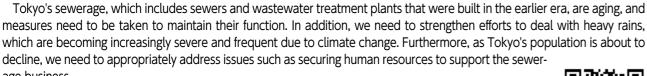
Parameter	Influent	Effluent	Effluent quality standards	
BOD*	150	3	25	
COD*	97	7	-	
Total nitrogen	31.1	8.0	30	
Total phosphorus	3.3	0.8	3.0	

(Results in FY2024) Water volume weighted average of 7 wastewater treatment plants. *BOD and COD are indicators of water pollution

Statistics of Wastewater and Sludge Treatment(Ward Area)

(Results in FY2024)

Results	Results Wastewater volume (m)		Sludge volume (m³)		Dewatered sludge weight (t)		Incinerated sludge weight (t)	
WWTP etc.	Annual	Daily average	Annual	Daily average	Annual	Daily average	Annual	Daily average
Nogawa treatment area	89,916,640	246,350	Treated at Morigasaki Water Reclamation center in the ward area					
Kita-Tama Ichigo	71,937,800	197,090	2,811,300	7,700	45,872	126	45,741	125
Kita-Tama Nigo	38,761,120	106,200	897,470	2,460	20,958	57	21,474	59
Tamagawa Joryu	60,840,350	166,690	2,429,420	6,660	54,324	149	54,356	149
Minami-Tama	40,461,940	110,850	1,725,260	4,730	30,350	83	30,548	84
Asakawa	30,918,930	84,710	641,220	1,760	23,618	65	23,154	63
Hachioji	62,786,860	172,020	1,652,280	4,530	40,712	112	40,688	111
Kiyose	85,901,780	235,350	2,694,580	7,380	63,599	174	63,631	174
Regional subtotal	391,608,780	1,072,910	12,851,530	35,210	279,433	766	279,592	766
Total	481,525,420	1,319,260	12,851,530	35,210	279,433	766	279,592	766


Note 1: All centers within the watershed sewer system have sludge incineration facilities.

Note 2: Significant figures are rounded. This may cause the totals to not add up exactly.

⁽organic matter).

6 Management Plan 2021

Under these circumstances, in order to continue playing a fundamental role in sewerage and to further improve sewerage services from a long-term perspective, we formulated "Tokyo Metropolitan Government Sewerage Operations Management Plan 2021" as a guideline for business operations for five fiscal

Three management policies and visions

Policy 1 Ensure the safe and comfortable living environment

- Steadily fulfill the basic roles of sewerage systems, such as "improving living environments by treating wastewater", "preventing flooding by removing stormwater", and "conserving water quality in public water bodies".
- Secure the function of sewers in the event of natural disasters, such as heavy rains which are becoming increasingly severe over the years and Tokyo Inland Earthquake.

Policy 2 Contribute to improving the water environment and creating an environmentally friendly city

- Pass on a good water environment to the next generation, and improve the water quality of oceans and rivers.
- Make progress in reducing energy use and greenhouse gas emissions, and contribute to the creation of an environmentally friendly city.

Policy 3 Consistently provide the best service at the lowest cost

- · Maximize publicity and economic efficiency, which are the principle of public enterprise management, and provide the best services at the least cost.
- Strengthen the management base through improvement of technological capabilities, development of human resources, and sound financial management, and conduct stable business operations with understanding and cooperation of our customers.

Structure of Management Plan 2021

Ensure the safe and comfortable living environment

Reconstruction of Facilities

Flood Control

Countermeasures for Earthquake Disaster

Strengthening of Reliability and Efficiency of Sludge Treatment

Enhancement of Operation and Maintenance Contribute to improving the water environment and creating an environmentally friendly city

Improvement of Combined Sewer System

Improving Quality of Treated Wastewater

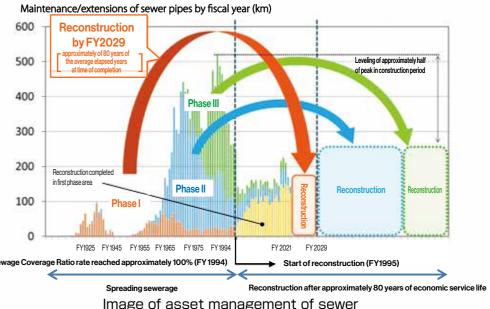
Energy Management and Global Warming Countermeasures

Strengthening of Management Foundation

Consistently provide the best service at the lowest cost

Measures Reconstruction

The sewerage works in the ward area has started operation since the 19th century and reached a 100% sewerage coverage at the end of FY1994. We are currently managing a sewer system extending as long as 16,200 km. However, the earlier sewers are aging, and the lengths of sewers that have exceeded their legal service life (50 years) account for 24% of the total, increasing to about 68% in the next 20 years. In addition, about 40% of 96 facilities such as wastewater treatment plants and pumping stations have been in operation over 50 years.

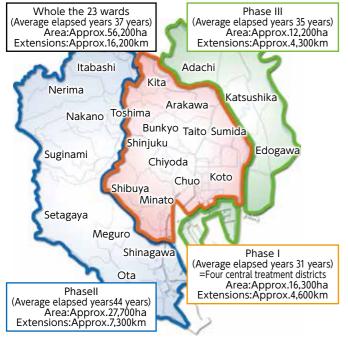

Therefore, we will reconstruct aging sewers, wastewater treatment plants, and pumping stations to ensure stable wastewater

transportation, wastewater treatment, and stormwater elimination functions toward the future.

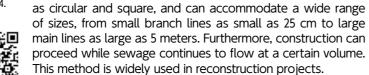
(Reconstruction of Sewers)

We will conduct inspections and investigations of sewers to determine their soundness, and proceed with reconstruction and repairs as planned to enhance stormwater drainage capacity and earthquake resistance, along with countermeasures against aging. In addition to extending the service life for an additional 30 years beyond the legal service life through planned maintenance and management, we will proceed with efficient reconstruction to extend the economic service life (up to 80 years) by using asset management methods for the leveling of the business in the mid- to long-term.

Our efforts Reconstruction of branch sewers


We will divide the ward area into three according to the age of sewers installed, and promote efficient reconstruction along with other improvements such as increasing the stormwater drainage capacity. Of these, we will prioritize the reconstruction of the four city core treatment areas (Phase I reconstruction area) with aging sewers and complete it by FY2029.

- ** Asset management method: This is the method that systematically and efficiently manage assets while evaluating the state of the facilities, conducting appropriate maintenance, and considering the life cycle cost and the leveling of reconstruction business in mid to long-term.
- * Economic service life: This is the number of years in which the annual average cost, computed by total cost (same as life cycle cost, construction cost plus maintenance cost) divided by the elapsed years, is the smallest.


* Number in parentheses is average age of sewer at end of FY2024.

Our efforts Reconstruction of trunk sewers

Information about Our Large-Scale Projects

Read the 2-D code for information on improvements of Chiyoda Trunk Sewer.

Reconstruction of trunk sewer using rehabilitation method

(Yatagawa trunk sewer)

The SPR method, one of the pipeline rehabilitation tech-

niques, is a technology jointly developed and refined by the

Bureau of Sewerage and private companies. It can accommo-

date sewer pipes with various cross-sectional shapes, such

Trunk sewers are pipelines that constitute a core framework of the sewer network. They collect and carry a large amount of wastewater to wastewater treatment plants and pumping stations. We will proceed with reconstruction by using rehabilitation methods to reinforce sewers from the inside without digging up roads.

We will give priority to the reconstructions of 47 trunk sewers constructed before 1955 and trunk sewers that need to be fixed based on investigations.

Depending on the soundness, countermeasures may include a combination of rehabilitation methods and repairs.

For trunk sewers that are hard to reconstruct due to conditions such as high to full water level, we will construct alternate trunk sewers in advance to bypass the flow.

Reconstruction of Wastewater Treatment Plants and Pumping Stations

In addition to measures against aging, we will proceed with reconstruction as planned to increase stormwater drainage capacity, improve earthquake-proofing andmaintainability, and increase energy efficiency.

Our efforts Reconstruction of Wastewater Treatment Plants and Pumping Stations

We will maintain the functions of facilities by performing repairs based on regular inspections and investigations, taking measures against concrete corrosion, and performing large-scale reconstructions.

For facilities that need to increase their stormwater drainage capacity, we will work to improve their functions together with measures against aging. For facilities to be insufficient in capacity during the reconstruction period, we will install alternative equipment in advance and sequentially upgrade while treating wastewater.

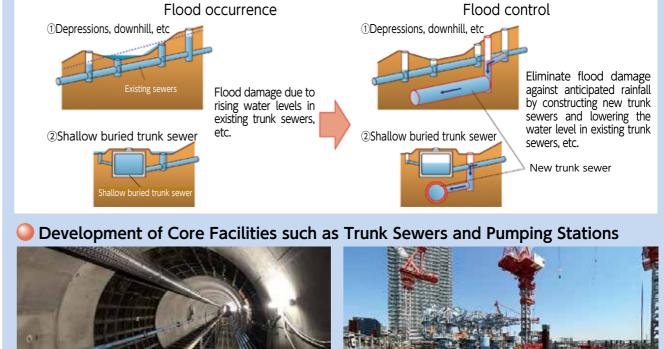
Based on the economic service life of each facility, we will carry out systematic and efficient reconstruction by leveling the project volume using asset management methods.

Measures Flood control

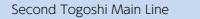
Promoting flood control will ensure urban functions and achieve safe and sound livelihoods.

We are developing facilities focusing on areas at high risk of flooding with the aim of being able to respond to a rainfall of 75 mm per hour in all parts of the wards area.

Concepts of flood control



Using flow-out analysis simulations alongside an analysis of past floods, 29 of the priority districts selected for advance disaster prevention have completed their flood countermeasures, and we will continue to steadily promote facility development.

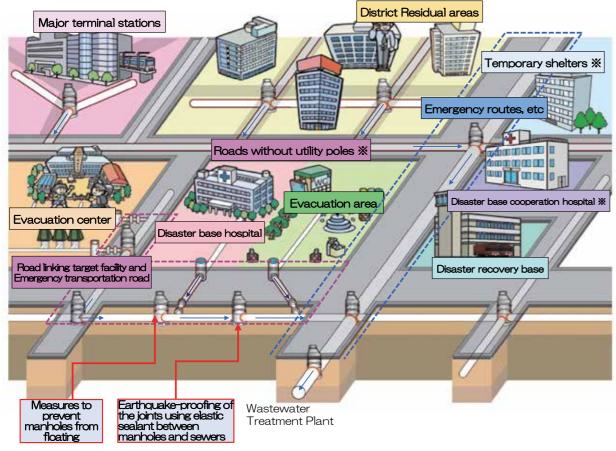

Since the construction of large scale facilities such as trunk sewers takes a long time, the effects of the facilities are quickly demonstrated through various measures such as the provisional use of partially completed facilities.

We will consider and promote both hard and soft measures to deal with rainfall that exceeds expectations.

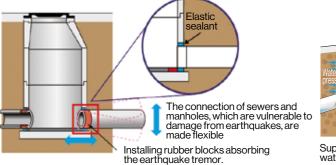
Flood Control through Construction of Trunk Sewers

Koto Pump Station

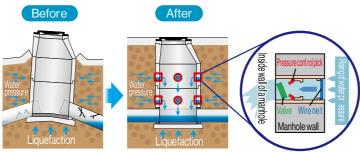
Measures Countermeasures for earthquake disaster


We will secure sewerage functions and traffic functions including emergency routes by promoting countermeasures against Tokyo Inland Earthquake and tsunami.

Our efforts Earthquake-proofing of junctions between sewers and manholes

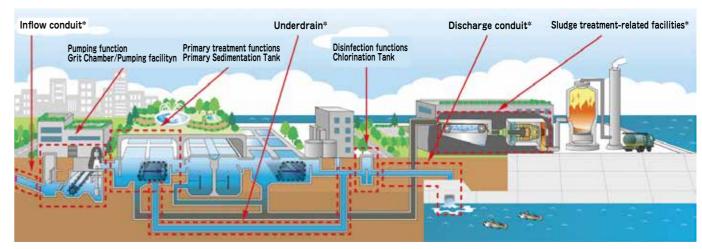

Targeting at evacuation sites and temporary shelters, we will promote earthquake-proof of junctions between sewers that receive wastewater from these facilities and manholes.

Our efforts Countermeasures to restrain manhole from floating


Targeting at emergency routes in the area with a high risk of liquefaction and roads that finished undergrounding of utility poles and where emergency vehicles pass, we promote countermeasures to restrain manholes from float-

*: Facilities that have been newly subject to the earthquake-resistance promotion project in the Management Plan 2021

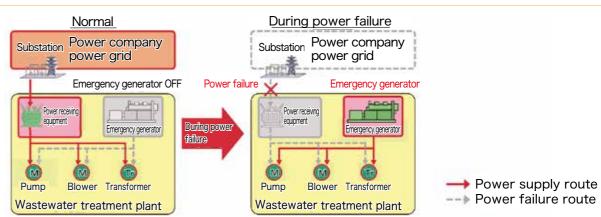
[Earthquake-proofing of the joints using elastic sealant between manholes and sewers]



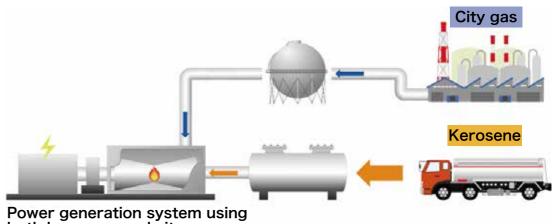
Suppress uplifting of manholes by dissipating excess water pressure caused by liquefaction.

[Countermeasures to restrain manhole from floating]

We are promoting earthquake-proofing countermeasures and expanding the number of target facilities to maintain sewerage system functions even in the event of an earthquake.


: Facilities to be made earthquake-resistant

* Facilities that have been newly subject to the earthquake-resistance promotion project in the Management Plan 2021


Our efforts Earthquake-proofing of equipment of facilities such as wastewater treatment plant and pumping station

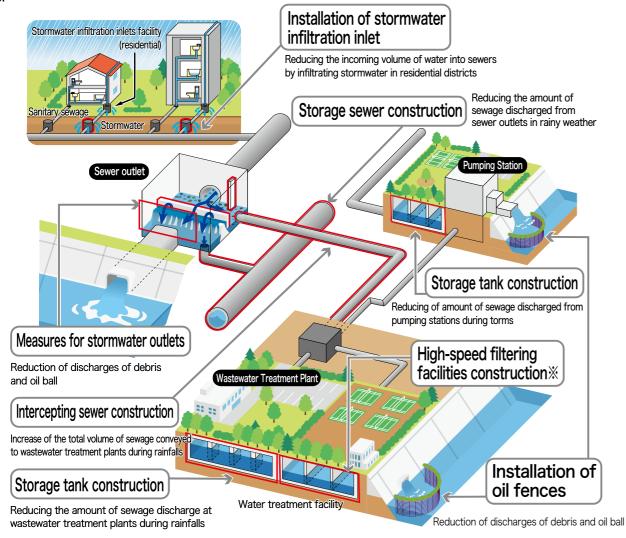
We will make sure that all facilities will be equipped with emergency power generation equipment capable of generating the required electricity to ensure the continuation of sewerage services even in the event of a power

We will work on diversification of power sources and fuel to ensure stable operation of the facilities even in the event of an earthquake.

[Development of emergency power generation equipment]

both kerosene and city gas

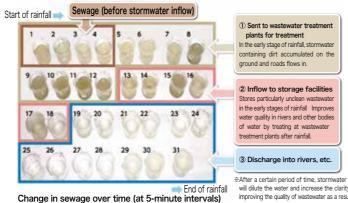
(Fuel diversification)


Measures Improvement of Combined Sewer System

In a combined sewer system in which wastewater and rainwater are flowed in the same single sewer pipe, the whole amount of sewage is collected and treated in the wastewater treatment plants on sunny and weak rainy days, while in case of strong rain, rainwater mixed with wastewater is discharged from the discharge outlets along rivers or from pumping stations to rivers and the sea, etc. in order to protect urban area from flood.


Storage facilities and other infrastructure will be constructed to improve water quality in rivers and oceans.

In order to reduce the amount of pollution released into water body from combined sewers in rainy weather, The Bureau is constructing storage facilities to hold the initial stormwater (which is particularly dirty). Accumulated sewage will be delivered to the wastewater treatment plants for treatment after the rain stops.


Construction of the retention facilities, which are designed to ensure effluent quality equivalent to that of a separate sewerage system as stipulated in the Sewerage Act Implementation Guidelines, has been completed by the end of 2023

Improvement of Combined Sewer System

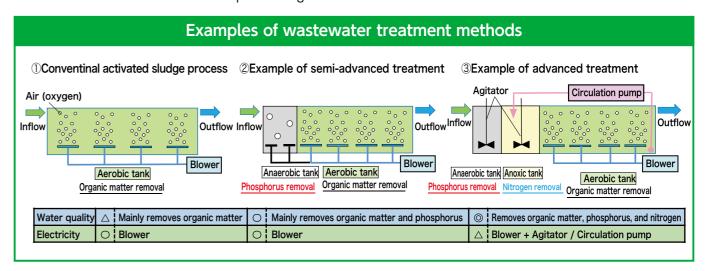
Storage facility (Shibaura Water Reclamation Center)

Particularly dirty wastewater storage in early stages of rainfall

in rainy weather (example)

and and

Measures Improvement of Quality of Treated Wastewater

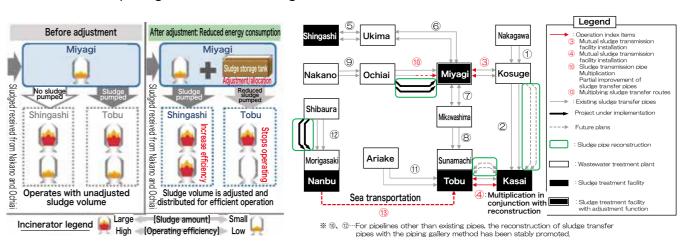

In order to reduce the number of days of red tides in Tokyo Bay, it is necessary to further remove nitrogen and phosphorus in the effluent, which are among the factors causing red tides.

For restoration of the water environment, we will further improve the quality of the effluent discharged into Tokyo Bay, the Sumida River, and other areas while also taking energy efficiency into consideration.

In accordance with the situations of each wastewater treatment plant, we will introduce equipment for advanced treatment and phosphorus removal from sludge treatment return wastewater to effectively improve the quality of effluent.

We will take efficient countermeasures, including installation along with the reconstruction of structures and equipment.

We will work to develop technologies to solve the problems associated with the installation of advanced treatment, such as site constraints and increased power usage.


Measures Strengthening of Reliability and Efficiency of Sludge Treatment

By strengthening the reliability and efficiency of sludge treatment, we will ensure the ability to stably treat sewage in the future.

We will promote the construction of mutual sludge transfer facilities between wastewater treatment plants and the use of multiple sludge transfer pipes to ensure backup functions in the event of earthquakes, etc., as well as prioritize the reconstruction of aging sludge transmission pipes to enhance the reliability of sludge treatment.

The Miyagi Water Reclamation Center will have a sludge treatment coordination function to improve the efficiency of sludge treatment by optimally allocating the amount of sludge among sludge treatment facilities.

In order to extend the life of limited landfill space, we promote recycling of sludge etc. and reduce the amount of waste for landfill disposal generated due to sewage works.

[Efficiency improvement through adjustment/distribution of sludge volume]

[Ward area sludge transmission network]

Measures Enhancement of Operation and Maintenance

In order to secure stable sewerage functions for the future, we will implement operation and maintenance for sewers, wastewater treatment plants and other facilities appropriately.

Our efforts Operation and maintenance of sewers

We will carry out effective and efficient maintenance and management to maintain the function of the vast amount of pipeline facilities and to prevent accidents.

Systematic inspection and investigation

In addition to daily patrols, we periodically conduct inspections/investigation in the pipes using TV cameras, etc.

<Inspection of manhole covers>

<Mirror-type TV camera>

Maintenance of flow function through systematic cleaning and repairs

Based on the results of inspections and investigations, we systematically carry out the cleaning of sediment, oil and grease deposited in the pipes, and repair work according to the deteriorated condition.

<Replacement of damaged installation pipe with high-impact rigid PVC installation pipe>

<Cleaning inside pipeline>

Our efforts Promotion of building pit drainage measures

We promote building pit drainage measures to prevent odors on streets and damage caused by the corrosion of sewerage facilities.

Preventive maintenance-type measures

We conduct investigation on the concentration of hydrogen sulfide, the cause of odor, in buildings located in business and shopping districts and tourist areas before complaints about odors are received. If the standard value is exceeded, we will request the building manager for improvements.

Countermeasures against odor sources

When there are odor complaints, we investigate the source of the odor, and request the building manager to implement appropriate maintenance and management, such as regular cleaning of the building pit and operation that does not allow wastewater to accumulate for a long time.

Strengthening cooperation with relevant departments in TMG and wards

The four related bureaus (Bureau of Urban Development, Bureau of Public Health, Bureau of Environment, and Bureau of Sewerage) in charge of relevant laws and regulations (Building Standards Act, Act on Maintenance of Sanitation in Buildings, Offensive Odor Control Act, and Sewerage Act) and each ward work together to implement building pit drainage measures.

Our efforts Addressing wastewater from business sites

It is difficult for current sewerage facilities to treat wastewater containing heavy metals and other toxic substances. Even if the substances are treatable, if a large amount is discharged into sewer, they cannot be fully treated and are discharged into rivers. In addition, if toxic substances are discharged into sewer, they may interfere with the treatment capacity of wastewater treatment plants. This is why it is necessary for business sites to properly maintain and manage their wastewater treatment facilities and discharge water of a quality that conforms to standards. Besides on-site inspections, the Bureau of Sewerage effectively uses regional water quality measurements to provide appropriate guidance, etc.

Water sampling and quality testing of wastewater from business sites

Our efforts Maintenance of wastewater treatment plants and pumping stations

Proper maintenance of wastewater treatment plants and pumping stations

[Operation and management of sewerage facilities]

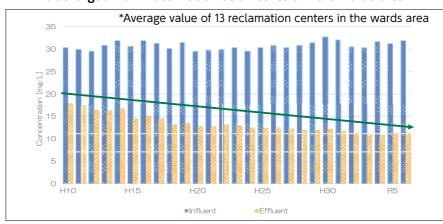
Water Reclamation Centers and pumping stations operate continuously for 24 hours a day, 365 days a year to prevent flooding, protect water quality, and ensure public health.

[Further improvement in reliability of Tokyo Amesh]

In rainy weather, the rainfall intensity and movement of rain clouds are observed by Rainfall observation radar equipment "Tokyo Amesh", and stormwater pumps are operated by predicting rainfall to contribute to the prevention of urban flooding.

In the future, together with the update of the Amesh radar currently implemented, a system that can observe the occurrence of rain clouds with high accuracy and monitor their development will be developed, further improving reliability.

Tokyo Amesh screen



Tokyo Amesh URL https://tokyo-ame.jwa.or.jp

Operation and management for both water quality improvement and energy conservation

• In wastewater treatment, operation and management aimed at further improving water quality and energy conservation were implemented by upgrading blowers and air diffusers and devising operation and management methods.

Changes over time in the quality of treated wastewater (total nitrogen)* discharged from water reclamation centers in the wards area

As for the changes in total nitrogen concentration over time, while there are no significant changes in the quality of inflowing wastewater, the concentration in wastewater discharged from the centers has been lowered.

Water quality analysis

Maintenance management according to deterioration

- Systematic inspection and investigation, including areas that are usually difficult to check
- In addition to repairing facilities with significant deterioration, identify facilities that are difficult to inspect, and select and carry out measures.

Before repair

After repair

1

8 Principal Measures for Regional Sewerage System

Measures Reconstruction

We conduct inspections and surveys of sewers and facilities to inspect their soundness. Based on the outcomes, we systematically reconstruct them and also achieve earthquake resistance, maintenance cost cuts, and energy consumption reduction. For trunk sewers that are difficult to reconstruct due to high water levels, we will promote the construction of alternative trunk sewers to bypass the flow of sewage. Based on the economic service life of each facility, we will carry out systematic and efficient reconstruction by leveling the project volume using asset management methods.

† Sewer damaged due to aging *Enlarged photo

Old trunk sewer with high water level in pipe (Kotta trunk sewer)

Measures Stormwater countermeasures

In areas where it is difficult for cities to eliminate stormwater on their own, we will install regional sewerage stormwater trunk sewers and work with them to reduce flooding damage. We will also consider making water reclamation centers and other facilities water resistant in case of river flooding.

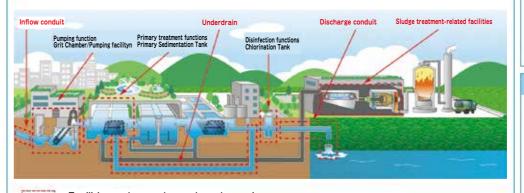
Regional stormwater management

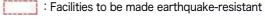
- Although municipalities are responsible for the construction of stormwater elimination facilities, In areas where it is difficult for cities to eliminate stormwater by themself because there are no rivers which stormwater can be discharged, regional stormwater elimination facilities maintained by multiple cities is necessary.
- We will promote construction of a regional sewerage stormwater trunk sewer in the southern part of the Upper Karabori River Catchment

eliminate stormwater on their own, we Upper Karabori River Catchment will develop regional sewerage stormwater trunk sewers by multiple cities

In areas where it is difficult for cities to Image of stormwater trunk sewer in the

Measures Earthquake countermeasures


In addition to securing minimum sewerage system functions, we will newly target the inflow conduits, underdrains, etc. of wastewater treatment facilities for earthquake-proofing against the maximum expected earthquake motion. In addition,


to ensure the stable operation of the facilities even in the event of an earthquake, emergency power and fuel will be secured for wastewater treatment plants and manhole pumps. Furthermore, the backup function of wastewater treatment plants will be enhanced in anticipation of a damage in treatment functions.

Wastewater treatment plants and pumping stations subject to earthquake-proofing

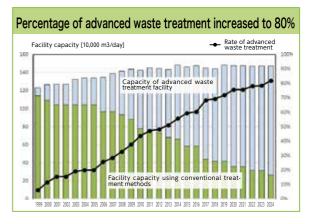
► Earthquake-proofing of wastewater treatment plants, etc.

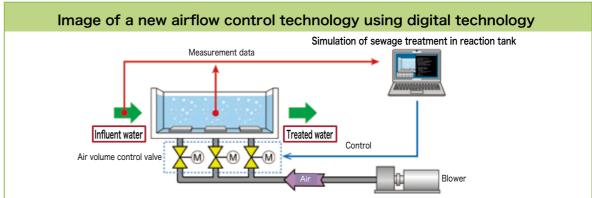
• In order to secure necessary sewerage functions in the event of an earthquake, we are newly targeting inflow conduits, underdrains, discharge conduits, sludge treatment facilities, etc. for earthquake-resistance

* New target facilities are shown in red

Earthquake-proofing of facilities

Backup of wastewater/sludge treatment




The mutual exchange function of connecting utility tunnels between wastewater treatment plants across the Tama River is utilized

Measures Enhancement of Treated Wastewater

To achieve the target water quality, we will improve the ratio of advanced treatment capacity to 90% by FY2025 by efficiently developing advanced treatment together with the reconstruction of facilities and equipment. We will also work on energy conservation as well as water quality improvement by using digital technology.

Percentage of treated wastewater in Tama River

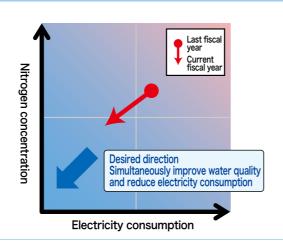
Measures Enhancement of operation and maintenance

We will extend the life of trunk sewers and facilities by conducting inspections and investigations and promoting systematic and efficient improvements and repairs based on the level of deterioration. In addition, we will reduce maintenance and management costs by reducing the use of electricity and fuel through the introduction of energyefficient equipment and ingenuity in operation, and we will also work on operation and management that will both improve water quality and save energy.

Life extension of trunk sewers and facilities

Pipe Inspection Using TV Cameras

We will inspect and investigations trunk sewers and wastewater treatment plant facilities to identify damage accurately and carry out systematic and efficient improvements and repairs.


Extending life of equipments

Blower inspection (Kita-Tama Ichigo Water Reclamation Center)

We will work on systematic and efficient improvements and repairs by consolidating and analyzing the soundness and repair history of equipment and facilities through inspections and investigations.

Image of optimization of wastewater treatment facility operation through two-axis management

The two-axis management chart shows nitrogen concentration on the vertical axis and electricity usage on the horizontal axis. The more the arrow points downward to the left, the more ideal the trend.

Example of high-efficiency, energy-saving incinerator

Tamagawa Joryu Water Reclamation Center Stoker Incinerator

We will reduce auxiliary fuel and greenhouse gas emissions by prioritizing the operation of high efficiency incinerators, such as high-temperature energy-saving sludge incinerators.

Measures Strengthening Cooperation with Municipalities

For the efficient operation of sewerage projects we will collaborate with municipalities to promote their regionalization and joint operation. In addition, for the sustainable operation of sewerage projects, we have strengthened technical support such as providing expertise on maintenance and management operations and human resource development for municipal staffs. For strengthening municipal sewers, we have also provided new financial support since 2023. We will also strengthen our crisis management system, including mutual support in the event of disasters.

Sewerage information exchange meeting Subsidized works — Independent works — Sewerage business management Human resource development National subsidy 1/2 assistance rate Operation and Crisis management Stormwater Countermeasures against aging countermeasures Costs for municipalities Costs for Information exchange municipalities

Image of sewerage information exchange meeting among the municipalities

municipalities

the case of pipes

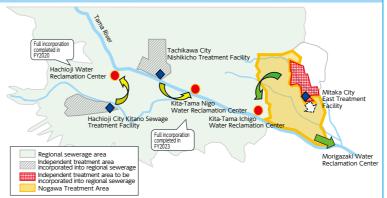
The Tokyo Metropolitan Government subsidy program for the nprovement of the resilience of the municipality sewerage service

Through a new subsidy system that subsidizes one-half of the costs borne by municipalities, we will improve and speed up measures against floods and earthquakes in municipal sewerage systems.

requests for supp City in charge of Contact/Coordinatio TMG Push-type support

By strengthening the mutual support system, we will provide stable sewerage services even during disasters.

Measures Strengthening cooperation with municipalities (incorporation of independent treatment areas)


Regional

sewerage office

In order to incorporate independent treatment areas that have difficulty in dealing with facility renewals, advanced treatment, and the improvement of earthquake resistance into the regional sewerage system, we will proceed with necessary procedures and facility development in consultation with relevant cities and organizations, and we will also provide appropriate technical support to relevant cities.

Hachioji independent treatment area was incorporated into Tokyo Metropolitan regional sewerage in January, 2021 and Tachikawa independent treatment area in March, 2024.

Incorporation of independent treatment areas

Effects from incorporation

- 1) Creation of favorable water environment by introducing advanced waste treatment
- 2 Reduction of facility renewal and maintenance costs from economies of scale
- 3 Maintenance of backup functions in the event of earthquakes, etc. taking advantage of the mutual exchange function of the Water Reclamation Center utility tunnel.

Incorporation of Hachioji independent treatment area

Construct of wastewater treatment facilities for independent treatment area incorporation (Hachioji Water Reclamation Center)

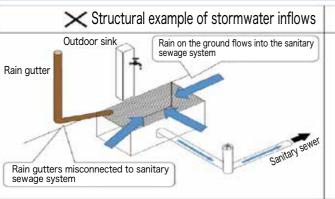
Incorporation of Tachikawa independent treatment area

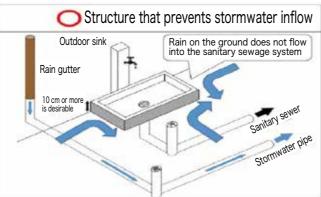
Development of pumping building to incorporate independent treatment area (Kita Tama Nigo Water Reclamation Center)

Measures Measures against water infiltration in rainy weather

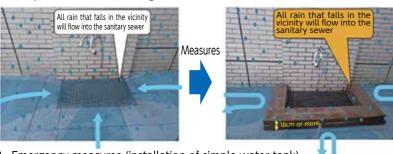
By promoting measures against water infiltration in case of rainy weather in cooperation with municipalities, we will reduce the damage caused by flooding in heavy rains, which have become more frequent in recent years, to achieve safe and secure livelihoods and ensure stable sewerage functions.

The project will specifically provide technical support using digital technology to promote measures taken by municipalities to prevent water infiltration at the source in rainy weather. In addition, we will take measures to maintain sewerage functions when a large amount of water enters wastewater treatment plants, etc. in heavy rain.


Causes of water infiltration in rainy weather <<Causes>>


- 1) A large amount of stormwater flows into sanitary sewers through outdoor sinks without roofs.
- 2 Stormwater enters because rain gutters, etc. are mistakenly connected to sanitary sewer.
- 3 Stormwater or underground water enters through joints or cracks in sanitary sewer. Etc.

Studying and implementing measures to mitigate damage to public sewerage systems in cooperation with municipalities


Source measures

For outdoor sinks in separated sewerage areas, we stipulate precautions such as "the structure must be designed to prevent rain from flowing in the ground surface and stormwater of rain gutters from flowing in". (Tokyo Metropolitan Government Drainage Facilities Outline)

1 Simple measures (raising outdoor sinks)

2 Emergency measures (installation of simple water tank)

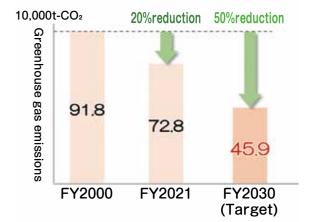
9 Energy Management and Global Warming Countermeasures

Measures Energy Management and Global Warming Countermeasures

By promoting energy management and global warming countermeasures, we will actively reduce energy consumption and greenhouse gas emissions, to contribute to the realization of the city with a low environmental

In order to achieve the goals of the "Earth Plan 2023" global warming prevention plan for the sewerage business and other such plans, we will promote initiatives such as comprehensive energy conservation and expansion of renewable energy use.

Targets and initiatives to realize "Carbon-Half" by 2030


The sewerage service emits greenhouse gases of nitrous oxide (N₂O) and methane (CH₄) in addition to energy-derived carbon dioxide (CO₂) from the use of electricity and fuel.

Therefore, in order to reduce greenhouse gas emissions, it is necessary to comprehensively consider the reduction of energy-derived CO₂ and N₂O, etc., and promote measures in an integrated manner. To this end, we have set targets as shown on the right.

To achieve "Carbon-Half" by 2030, a plan to halve greenhouse gas emissions by 2030, it is important to promote the introduction of newly developed advanced technologies as well as expanding the introduction of existing technologies. In addition to accelerating the Earth Plan and Smart Plan initiatives underway to date, we will strengthen our initiatives to introduce newly developed equipment and further utilize renewable energy.

the above target: Approx. 25% Renewable energy power use ratio: Approx. 45 to 50%

Greenhouse gas emissions reduction target

Vision for achieving zero emissions by 2050

It is difficult to achieve zero emissions by 2050 only by introducing existing and advanced technologies. It is necessary to make thorough efforts to reduce greenhouse gas emissions by maximizing the potential of sewerage systems and resources, promoting the introduction of even more advanced technologies, and developing and introducing innovative technologies.

It is also important to contribute to the realization of zero emissions for society as a whole by promoting initiatives that use sewerage resources without being bound by the boundaries of the sewerage service business.

Vision for achieving zero emissions

Our efforts Comprehensive energy conservation

In addition to introducing energy-efficient equipment along with the reconstruction, we will rebuild energyefficient equipment with significantly improved functionality compared to existing equipment ahead of schedule to further ensure energy conservation.

Wastewater treatment process OMicro bubble air diffuser Reaction tank Micro bubble

Summary: Small bubbles make it easier for oxygen to dissolve in the wastewater in the reaction tank and reduce the amount of air flow. Micro bubble air diffuser can reduce power consumption by approx. 20% compared to conventional air diffusers.

Sludge treatment process

OBelt type sludge concentrator

Summary: By using gravity to perform filtration thickening, power consumption is reduced by approx. 90% compared to conventional centrifugal force thickeners.

Our efforts Use more renewable energy

Conventional

air diffuser

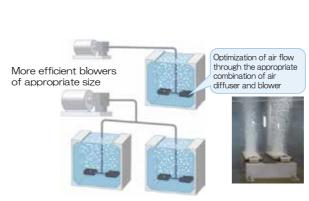
In addition to expanding introduction of solar power generation, we will secure energy on our own by making use of renewable energy, such as reinforcing power generation output that makes use of digestion gas generated

air diffuser

Example of solar power generation

Summary: Reducing greenhouse gas emissions by introducing solar power generation on the upper level of the facility and on the site for the reconstruction of the water reclamation center.

Image of digestion gas power generation



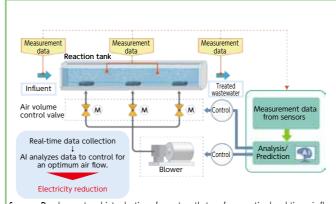
Summary: Digestion gas generated in the sludge treatment process is used as fuel to generate electricity, and waste heat generated in power generation is used for heating digester.

Our efforts Improvement of the efficiency of treatment processes and methods

We will improve the efficiency of treatment processes and methods, such as optimizing the aeration system and introducing an energy neutral incinerator that can self-supply the electricity required for its operation by generating electricity using waste heat from sludge incineration.

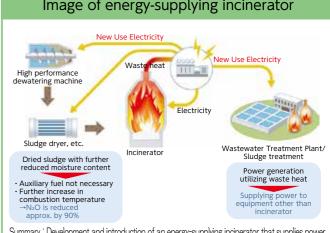
Optimizing the aeration system

Summary: Reduction of greenhouse gas emissions by introducing more efficient blowers of appropriate size (capacity) together with micro bubble diffusers,


Image of energy neutral incinerator Dehydrated sludge with further reduced moisture content Auxiliary fuel not necessaryCombustion temperature over 850 degrees Power generation utilizing waste heat Self-supply necessary electricity

Summary: Reduction of greenhouse gas emissions by generating electricity utilizing incineration waste heat to provide self-sufficient in electricity required for the operation of the incinerator while further increasing the combustion temperature.

Our efforts Zero Emissions by 2050


We will promote the development of technologies that can drastically reduce greenhouse gases so as to realize zero emissions by 2050.

Development and introduction of Al-based air flow control technology

Summary:Development and introduction of a system that performs optimal real-time air flow control through machine learning by Al based on a lot of data such as inflow volume and water quality, and changes in quality of treated water according to air flow control.

Image of energy-supplying incinerator

Summary: Development and introduction of an energy-supplying incinerator that supplies power to equipment other than incinerator by generating more electricity than the electricity used in the incinerator while further increasing the combustion temperature

Air Solar (Perovskite Solar Cell)

Install on the covering part of a facility

Summary: Conduct joint research with private companies for the practical application of Air Solar, which is a domestically produced technology.

10 Enhancement of Service Quality

Measures Promotion of Technological Research and Development

In order to maintain and improve the sewerage service, we are systematically proceeding with technological research and development concerning the challenges that the business faces and the issues which will become risks in the future, and lead Japan's sewerage technology.

Our efforts Promotion of "Technological Research and Development Promotion Plan 2021"

In order to achieve the goals of Management Plan 2021 and to efficiently solve technical probrems in sewerage facilities through technological development, we have established Technological Development Promotion Plan 2021 for 2021-2025.

In addition to enrichment of the four initiatives to further promote efficient technological development, we will place greater emphasis on the use of digital technology and technological development related to maintenance management.

Efforts to promote technology development efficiently

Initiative 1

We have adapted the method of Management of Technology (MOT) in order to comprehensively manage from the setting of development theme to project realization in the PDCA cycle.

Initiative 2

In order to create and develop innovative technologies and ideas applicable for sewerage business, we will further promote open innovation to integrate technologies from various fields.

Initiative 3

We will further promote collaborative research, especially with the scheme of "Collaborative research with the premised introduction of developed technology" for enhancing and promoting incentives.

Initiative 4

We will strive to improve the technological capabilities of the industry by conducting collaborative research to induce innovations from private enterprises etc. in addition to securing inheritance of technics and know-how.

Example of efforts New Demonstration of Sewage Sludge Recycling

 \sim Contributing to domestic production and stable supply of fertilizers! \sim

A phosphorus recovery and fertilizer conversion facility was put into operation in January 2024.

In cooperation with ZEN-NOH, the company is working on product development and experimental cultivation of fertilizers by utilizing the "recycled sewage phosphorus" produced as a raw material for fertilizers.

Phosphorus recovery (recycled sewage phosphorus)

Infrastructure tour for parties concerned

Example of efforts Air Solar

 \sim First verification at a sewage facility in Japan! \sim

Air Solar is a Japan-originated next-generation solar cell featuring a thin, light, and flexible design. In May 2023, the largest-scale solar cell in Japan was installed on the cover of a water treatment facility, and its practical application will be verified until December 2025.

di

Kick-off of practical application verification

Example of efforts Energy-supply (carbon-negative) incinerator

~ Capable of generating more electricity than is used in the incinerator! ~

This incinerator can generate more electricity than is used by the incinerator and can also supply electricity to sludge treatment and water treatment facilities.

It was approved as a practical technology in December 2023.

Measures Review of Work Procedures through Digital Transformation

We will promote digital transformation (DX) for the administrative work of the Bureau of Sewerage. In addition to simplifying and streamlining administrative work by reviewing existing systems and procedures, we will utilize a variety of digital technologies to provide highly convenient services for our customers.

Furthermore, we will continue our efforts steadily to pursue possible solutions to the digital divide.

Our efforts

Thorough efforts of 5 "less"

In addition to thorough efforts to achieve the five interrelated "less" (paper-less, fax-less, stampless, cash-less, and touchless), we will promote digital transformation (DX) by reviewing existing systems and procedures, while shifting from analog environments based on paper and stamps to online digital environments.

Our efforts Enhancement of system infrastructure

We will build a next-generation system infrastructure that enable us to change our work style flexibly, such as telecommuting and working from satellite offices. As a result, we can work without being restricted by devices or locations.

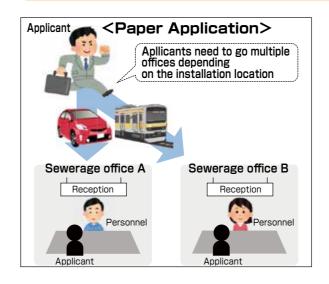
Example of efforts

Digital Transformation (DX) to new inspection after construction for sewage facilities by utilizing drones

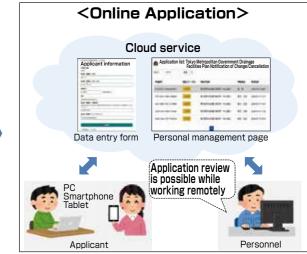
Planning and Coordination Division has been working on demonstration experiments by utilizing drones in inspection works for construction at high and narrow places.

Even at the places that are difficult for people to enter, through movies filmed by drones and 3D models established by the movies, it has become possible to grasp the construction work completed with high accuracy.

In the future, by preparing the guides to utilize drones based on the knowledge obtained by this project, we continue to promote DX within our Bureau.


Our efforts Digitalization of administrative procedures/consultation

Based on the Tokyo Digital First Initiatives Promotion Plan, we have introduced an online application service that allows customers to complete administrative procedures such as notifications and applications anytime, anywhere without having to come to the office.

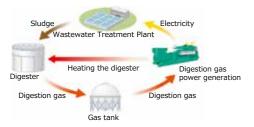

Upon implementation, we improved the system to make it more user-friendly by utilizing user reviews and feedback collected during the trial stage.

Even after the full-scale launch, we continue to improve the system by collecting user feedback, allowing us to flexibly respond to changing needs.

As part of our administrative consultation services, we continue to promote digitalization by utilizing tools such as 'Bureau of Sewerage Q&A' (Bureau of Sewerage chatbot), which allows customers to make inquiries anytime and from anywhere.

Measures Effective use of resources in sewerage

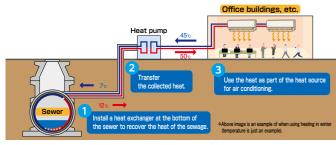
By effectively utilizing the resources and energy of the sewerage system, we will fully exploit its potential and create a favorable urban environment.


Our efforts Effective use of sludge

The amount of sludge generated in the wastewater treatment process is enormous, about 200,000m³ per day. In order to extend the life of limited landfill space. we are actively promoting recycling as well as weight reduction with total incineration.

Recycling of sewage sludge

The Morigasaki Water Reclamation Center implemented power generation using sludge digestion gas (PFI project) as a mean to utilize the energy contained in sludge. This method covers approximately 20% (about 20 million kWh) of the center's electricity consumption. (Project ended in March 2024) Currently, the center continues power generation by utilizing existing facilities while simultaneously advancing a new DBO project toward facility operation starting in April 2027.


DBO project

Our efforts Utilization of sewage heat

Sewage heat is a renewable energy that uses the temperature characteristics of sewage and can be utilized as a heat source.

Sewage heat is used as a heat source for heating and cooling at wastewater treatment plants and nearby office buildings, which effectively reduces greenhouse gas emissions.

To further promote the utilization of sewage heat, we publish a "Sewage Heat Utilization Guide" and a "Sewage Heat Potential Map" on our website, and collaborate with

Use of heat from sewers (image)

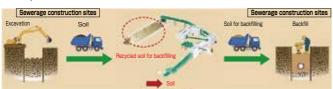
Our efforts Use of reclaimed wastewater

Reclaimed wastewater is treated wastewater that has been further cleaned through filtration and other processes. Currently, reclaimed wastewater is produced at four wastewater treatment plants including the Shibaura Wastewater Treatment Plant and is effectively used as a valuable urban water resource.

We supply approximately 100,000m³ of reclaimed wastewater per day to the Jyo-nan urban river channels with low water levels (Shibuya River, Furukawa River, Meguro River, and Nomigawa River), and to rivers and waterways which have ceased to flow, such as the Nobidome Waterway and the Tamagawa Waterway, as river/waterway restoration.

Shibuya River waterfront space

In addition, we use reclaimed wastewater for toilets in the building, for sprinkling water to ease the summer heat, and for disaster prevention.


Utilized for toilet water in buildings, etc.

Utilized for sprinkling water

Our efforts Recycling of soil from sewerage construction sites

The amount of construction soil generated from sewerage works in the ward area is about 200,000m³ per year, and 70% of it (about 140,000m³), is recycled again as backfill soil for sewerage works by adjusting the size of soil grains and moisture content.

In order to promote the soil recycling, we will reconstruct the "Soil-Making Village" (Nakagawa Construction Surplus Soil Improvement Plant) and be continuing the recycling

Recycling of soil from construction sites

Measures International developement activities for the Tokyo sewerage systems

We are promoting the international expansion of sewerage technology originating from Tokyo by leveraging the strengths of Tokyo sewerage, such as its technological capabilities and management know-how.

Through the technical support Tokyo Sewerage, we will contribute to the resolution of sustainable issues in sewerage facility development and business operation, and by encouraging the overseas expansion of sewerage related companies, we will contribute to the revitalization of the sewerage business and the strengthening of the industrial strength of Tokyo and throughout Japan.

Our efforts International developement activities of our sewerage technology

The Bureau of Sewerage, the Tokyo Metropolitan Sewerage Service Corporation (TGS), which is a policy collaboration organization, and private companies have jointly developed various technologies that are used in the Tokyo sewerage system,

and we will promote these technologies overseas in cooperation with the companies that developed them.

In addition, by collaborating with JICA and other related organizations, we will contribute to solving the problems of countries with inadequate sewerage facilities by using our expertise in the construction and maintenance of facilities and sewerage business operations.

JICA Partnership Program in Ulaanbaatar city.

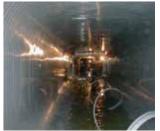
We have commenced the project for human resource development on maintenance and management and updating of sewer pipes in Water Supply and Sewerage Authority of Ulaanbaatar City, in collaboration with TGS since June 2024.

Technological Support for Dhaka Water Supply and Sewerage Authority(DWASA)

Based on the understanding concluded between Bureau of Sewerage, TMG, DWASA and Asian Development Bank, on the field of sludge management and other fields, we share expertise and technologies through online lecture and exchange of views, acceptance of observation of work sites etc.

Worldwide Expansion of SPR method (Reconstruction of aging facilities)

SPR stands for Sewage Pipe Renewal. With this construction method, a PVC profile is wrapped around the inner surface of old sewer pipes for renewal. Construction can be done while wastewater is flowing, without digging up roads. It can be used for various cross-section shapes, including circular pipes, horseshoeshaped culverts, and even rectangular culverts. As of end of March 2025, this work has been performed on a total of approx. 199 km of sewer in Asia, North America, Europe, and elsewhere abroad.



Details of SPR

Promotion of human resource exchanges

Through human resource exchanges, such as visits from overseas governments and local governments, accepting trainees, and dispatching staffs, we aim to promote and provide Tokyo Sewerage's technology and know-how, and strengthen our overseas network.

Site visit of water reclamation centers by foreign governments

Promotion of human resource development

By sending our staff overseas to present papers in English at international conferences and gain international knowledge and experience, we will raise their awareness toward the international society, which will lead to further international development.

Paper presentations by staff (IWA2024)

Further enhancement of information dissemination

We will actively promote Tokyo's sewerage at major international conferences, exhibitions, and trade fairs in the field of water environment in Japan and overseas, in order to enhance its presence.

Information dissemination in international conferences (Singapore International Water Week 2024)

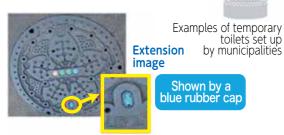
11 Enhancement of Reliability

Measures Strengthening Crisis Management

In order to secure sewerage functions even in the event of crises such as disasters or serious accidents, we will strengthen our crisis response capabilities by focusing on the development and enhancement of emergency recovery systems, the strengthening of disaster prevention measures in cooperation with municipalities, and the enhancement of information dissemination in preparation for disasters.

Our efforts Development and enhancement of emergency recovery systems to ensure sewerage functions

We will strengthen our ability to respond to disasters by conducting more practical drills and enhancing training in the operation of communication equipments to be used during disasters.



Decision-making training at Disaster Response Headquarters in Bureau of Sewerage Disaster Preparedness Drill

Our efforts Development and enhancement of emergency recovery systems to ensure sewerage functions

We will expand the number of manholes that can be designated as temporary toilets in cooperation with municipalities in 23 wards in order to secure toilet functions.

We will carry out training in cooperation with municipalities for smooth operations when carrying in and receiving night soil in a disaster.

A manhole that can be used as a temporary toilet

Coordinated training among municipalities for carrying in and receiving night soil

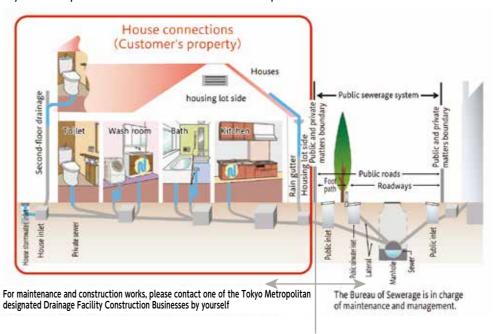
Our efforts Dissemination of information to customers at ordinary times

In addition to disseminating information about our earthquake countermeasures and flood prevention efforts at various events, we will also provide information in multiple languages and easy-to-understand Japanese. We also disseminate information on how customers can prepare against flooding by themselves.

Every year, June is designated as Flooding Countermeasure Reinforcement Month. We carry out door-to-door visits to customers who live in semi-underground house and distribute leaflets by posting to inform them of the danger of flooding from roads and backflow from sewer pipes in semi-underground house during heavy rains to ask them to prepare against flooding.

Crisis Management Industry Exhibition Bureau of Sewerage booth

In cooperation with the relevant departments, we are working to raise awareness of the dangers of semi-underground buildings from the time of planning construction by posting information on the wards website, at housing exhibitions and design offices, and announcing at various events.



Explaining the dangers of flood damage, using models at events

Our efforts System for restoring drainage facilities in case of a disaster

In case of a disaster, as during normal operation, customers need to make a request to the drainage equipment constructor designated by Tokyo Metropolitan Government for construction and other services.

For this reason, in order to promptly restore house connection facilities at the time of a disaster, we are providing on our website information on house connection facility construction business operators designated by the Tokyo Metropolitan Government that can respond to restoration works.

Measures Bureau of Sewerage public relations strategy

Based on the fundamental principles of the "Tokyo Sewerage Public Relations Strategy" outlined in the "Management Plan 2021," we will "enhance environmental learning opportunities" and "strengthen awareness campaigns". At the same time, we will focus on "providing information that resonates with each customer", "increasing awareness" of Tokyo Sewerage and leading to a "better understanding" and "positive image".

Our efforts Initiatives to deepen understanding of the sewerage business through use of sewerage facilities

Aiming at communicating the roles and attractive features and promoting understanding of the sewerage works, we conduct "Sewerage Infrastructure Tour" to guide the sewage facilities that people have less opportunities to see such as water reclamation centers and rainwater regulating reservoir.

Minamisuna Storm Water Regulating Reservoir

Tour of Sunamachi Water Reclamation Center

Tamagawa Joryu Water Reclamation Center

We also introduce sewage facilities and sewage works online.

https://www.gesui.metro.tokyo.lg.jp/business/b4/web/infrastructure_online/index.html

Our efforts Creating opportunities for environmental education for the young generation who will lead the next generation

In order for children to have a better understanding of sewerage systems and to come to think and act independently about the future water environment, we implement a sewerage education project mainly for fourth-grade elementary school students based on the latest initiatives such as global warming countermeasures.

The on-demand classes

Grand Prize Winner of the Report Contest

Tokyo Sewerage Museum "Rainbow"

Ariake Water Reclamation Center

Highlights of the Children's Sewer Adventure Tour

Our efforts Effective Communication

We will share information through various media channels, including our website, our official X account, the Tokyo Douga (YouTube), and online advertisements.

We will enhance publicity efforts and strengthen initiatives to achieve accurate and favorable coverage across various media outlets. This will promote our sewerage projects through objective and reliable sources, such as news reports and newspaper articles.

Information dissemination through clips

Announcement via the official X account

A media site tour was conducted.

Our efforts Initiatives to deepen interaction with customers

June, before the rainy season begins, is designated as Flood Prevention Awareness Month. We will promote flood preparedness to residents. Additionally, October, when temperatures drop and grease solidifies more easily, is designated as the intensified month for the "No Grease, No Blockages, Comfortable Sewers!" campaign. We will actively communicate our efforts to prevent oil disposal into the sewers.

Our efforts Initiatives to listen to customer opinions

In addition to using the sewerage monitoring system to receive evaluations of our business measures through the internet, we also conduct various investigations on a regular basis to collect their opinions and feedbacks, so that we could refer to the operation of our business.

Measures Operational structure supporting the sewerage business

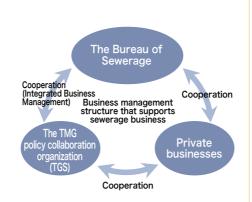
The Bureau of Sewerage, the TMG policy collaboration organization (Tokyo Metropolitan Sewerage Service Corporation (TGS)), and private sectors will work together to provide sewerage services.

Our efforts Roles of the Bureau of Sewerage, TGS, and private sectors

The Bureau of Sewerage, TGS, and private sectors will support the sewerage business with strengthened cooperation, each from their respective standpoints, based on a division of roles below. The Bureau of Sewerage, which is responsible for business operation/implementation, will play a central role.

[Basic division of roles of 3 sectors]

•The Bureau of Sewerage


Core works such as formulation of management policies, construction and critical maintenance of facilities, water quality regulations, and other fundamental operations

•Tokyo Metropolitan Sewerage Service Corporation (TGS)

Works that needs to be done in close cooperation with the Bureau of Sewerage and which requires expertise

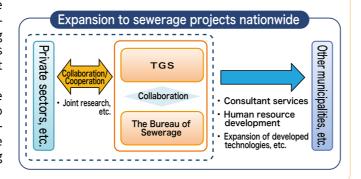
Private operators

Perform routine tasks and other works that can be performed by private businesses

Our efforts Introduction of new facility management methods for the future

To ensure the stable operation of the public sewerage in the future, we will introduce comprehensive outsourcing of water treatment facilities in some water reclamation centers, based on the characteristics of the Tokyo sewerage system.

- •The Bureau of Sewerage, TGS, and private businesses will compete to provide stable sewerage services from their respective standpoints, to improve services by demonstrating technological capabilities and economic efficiency with creativity and ingenuity.
- Under the new facility management method, we aim to build a next-generation sewerage system, e.g. automatic operation using digital technology such as AI.


Measures Strengthening group management with TGS

The Bureau of Sewerage and the TMG policy collaboration organization (Tokyo Metropolitan Sewerage Service Corporation (TGS)) will conduct integrated business operations as the "Tokyo Sewerage Group" and provide stable services toward the future.

Our efforts New role of TGS

From FY2022, by comprehensively outsourcing the wasterwater treatment facilities of some water reclamation centers to TGS, TGS will be capable of managing and operating the entire sewerage facilities, from sewers to wastewater treatment plants and sludge treatment facilities.

As members of the Tokyo Sewerage Group, the Bureau of Sewerage and TGS will work together to improve our technical powers and technological development capabilities, and contribute to the coexistence and co-prosperity of local municipalities by expanding the technologies nationwide.

Our efforts Strengthening management foundation of TGS

Based on "Management Strategy Action Plan 2021" formulated by TGS, we will steadily execute the business plan that reflects the company's future management vision, and strengthen the foundation of its management, including corporate governance, human resources, technology, and finance.

Measures Human resource development and technical capability improvement

By inheriting and improving the technical capabilities that Bureau of Sewerage has cultivated over the years, and by training professional sewerage administration staff who can face to the various crisis and issues appropriately, we aim to stably provide sewerage services and lead sewerage projects nationwide.

Our efforts Usage of the Sewerage Technology Training Center

The Sewerage Technology Training Center is a large-scale training facility that aims to develop human resources and improve technical skills through practical training and simulated experiences in a variety of fields. 33 different types of courses in the fields of civil engineering, machinery, electrical engineering and water quality management, and through the process of experiencing by themselves, to train young staffs and improve the leadership skills of mid-career and experienced staffs.

We will also promote the private companies to use this center, and proactively contribute to the development of human resources, carring on of technology, and the improvement of technical capabilities throughout the sewerage industry.

Measures Compliance promotion

We work to raise awareness of compliance and create an organizational environment in which each and every employee acts to improve business operations as well as to comply with laws and regulations.

Our efforts Compliance promotion in Sewerage Group

We consult with the Bureau of Sewerage Compliance Promotion Committee, and make a compliance plan. We also conduct training and educational activities, and strengthen the internal control system to ensure the appropriateness of operations.

In addition, the Bureau of Sewerage and TGS hold a conference to share their efforts and information, and work as a group to meet the demands of customers.

Bureau of Sewerage Compliance Promotion Committee

12 Living and Sewerage

Sewerage Service Charges

Sewerage business is supported by service charges paid by customers, calculated according to how much

wastewater is discharged. Often, the sewerage service charge is collected together with the water charge every 2 months to reduce collection costs and to make payment easier.

Sewerage Service Charges (1 month)

Sanitary sewage type	Volume (m³)	Rate (Yen)
	0~8 m³	560
General wastewater	9~20 m³	110/m³
	21~30 m³	140 /m³
	31~50 m³	170∕m³
	51~100 m³	200/m³
	101~200 m³	230/m³
	201~500 m ³	270∕m³
	501~1,000 m³	310 ∕m³
	1,001m3 and more	345/m³
Public Bath	0~8 m³	280
wastewater	9 m³ and more	35∕m³

- * The sewerage service charge is the sum of the amount calculated from the table above and the
- When not only tap water, but also well water is included in sewage, the total figures in the above table is used to calculate the charge.

Example of calculate on (1 month)

Cost for 20m3 of wastewater

(average water usage for households with three people)

Rate from $0\sim8\text{m}^3$ ¥560

Rate from $9\sim20\text{m}^3$ ¥1,320 (¥110×12m³)

> Total ¥1,880

Sewerage Service Charge=¥1,880+consumption tax (Fractions below 1 yen removed)

[How we verify the amount of discharged wastewater]

- ●Tap water
- Sewage is assumed to be equal of the amount of tap water used.
- •Water other than tap water (i.e. well water)
- A timer is placed on a water pump to record pumping time and calculate the amount of wastewater discharge.
- * If you are the operator of a business where the amount of water used is significantly different from the amount of sewage discharged, such as an icemaking business, you may be eligible for the reduction system. For more information, please consult to Customer Service and Management Section, Accounting and Contracting Division, Bureau of Sewerage at 03-5320-6573 or contact the Bureau of Sewerage branch offices.

[Sewerage service charge exemptions]

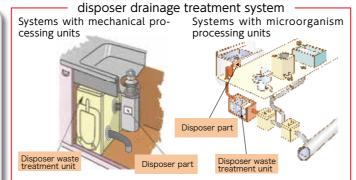
- Sewerage service charges are reduced in the following situations.
- Households depending on public assistance
- For public interest projects or in other special circumstances

In case of temporality releasing sump water corresponding construction works and so on, submission of temporary use form is required. This kind of water discharge is subject to payment for sewerage service

If installation of house connection inside the residentional area is planed to execute within 23 wards, it is required to submit notification to the Bureau of Sewerage no later than 7 days prior to the date of installation.

Notification in advance is required to install a house connection inside the house.

In addition, only drainage facility construction companies designated by the Tokyo Metropolitan Government are allowed to perform drainage facility construction work. Never allow unregistered or undesignated persons perform construction work, as you will be subject to penalties.


Installation of "disposer drainage treatment system"

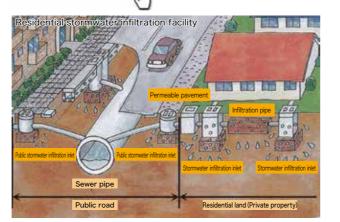
In the 23 wards of Tokyo, disposers other than "disposer wastewater treatment systems" cannot be installed according to the ordinance of the Tokyo Metropolitan Sewerage Ordinance.

Proper maintenance of disposer drainage treatment systems is necessary to maintain their healthy function. Please sign a maintenance contract with an operation and maintenance company.

In case of installation, it is necessary to submit a notification of new drainage construction facilities and "plan concerning maintenance of disposer drainage treatment system."

Rainwater Infiltration in Private Properties

In recent years, increased urbanization has reduced fields and other open spaces, resulting in less stormwater infiltration into the ground. Stormwater inflow into sewers has therefore increased, which is one


Moreover, in areas with combined sewers, stormwater mixed with sewerage is discharged to rivers and other waterways to protect the city from flood during heavy rain.

Therefore, in order to reduce stormwater inflow into the sewers in rainy weather, the Bureau of Sewerage coordinates with local ward governments to promote the installation of stormwater infiltration facilities in residential areas to promote infiltration of stormwater to undergrounds.

Access here for details of subsidies and other programs.→

* A single disposer cannot be installed in the 23-ward areas. 東京都下水道局 ディスポーザ 機関

Sewerage Offices Branch Offices

Main Bureau

Division	Address	Telephone	
General affairs, Personnel, Accounting and Contracting, Planning and Coordinating, Facilities Management and Maintenance, Construction	2-8-1 Nishi-Shinjuku, Shinjuku-City	03(5321)1111 (Metropolitan Government main phone number)	
Regional Sewerage Office	2-26-12, Takamatsu-cho, Tachikawa City	042(527)4821	

Sewerage Offices Branch Offices

Sewerage Office address and telephone number	Coverage area	Branch Office	Telephone	
	Chiyoda-City	Chiyoda Branch Office	03 (3270) 7325	
Chubu Sewerage Office 2-6-3 Otemachi, Chiyoda-ku	Chuo-City	Chuo Branch Office	03 (3668) 8661~2	
2-6-3 Otemachi, Chiyoda-ku 03(3270)8317	Minato-City (excluding Daiba)	Minato Branch Office	03 (3798) 5243~4	
33(3273)3377	Shibuya-City	Shibuya Branch Office	03 (3400) 9477~8	
	Bunkyo-City	Bunkyo Branch Office	03 (5976) 2516~7	
Hokubu Sewerage Office 2-1-8 Kuramae. Taito-ku	Taito-City	Taito Branch Office	03 (5821) 2401、2043	
2-1-6 Kuramae, Tano-ku 03(5820)4345	Toshima-City	Toshima Branch Office	03 (3989) 8523~4	
33(3323) 13 13	Arakawa-City	Arakawa Branch Office	03 (5615) 2891	
	Sumida-City	Sumida Branch Office	03 (3622) 7005	
Tobu 1st Sewerage Office	Minato-City (Daiba only)		03 (3645) 9273	
7-1-14 Toyo, Koto-ku	Koto-City	Koto Branch Office		
03(3645)9643	Shinagawa-City (Higashi-Yashio only)	KOLO Branch Office		
	Ota-City (limited to Reiwa Island)			
Tobu 2nd Sewerage Office	Adachi-City	Adachi Branch Office	03 (3855) 7411	
1-2-1 Kosuge, Katsushika-ku	Katsushika-City	Katsushika Branch Office	03 (3602) 5755	
03(5680)1268	Edogawa-City	Edogawa Branch Office	03 (5658) 4481~2	
Seibu 1st Sewerage Office	Shinjuku-City	Shinjuku Branch Office	03 (3363) 9931~2	
3-37-4 Arai, Nakano-ku	Nakano-City	Nakano Branch Office	03 (5343) 5651~2	
03(5343)6200	Suginami-City	Suginami Branch Office	03 (3394) 9457~8	
Seibu 2nd Sewerage Office	Kita-City	Kita Branch Officece	03 (3969) 6490~1	
4-27-1 Ukima, Kita-ku	Itabashi-City	Itabashi Branch Office	03 (5965) 2161~2	
03(3969)2311	Nerima-City	Nerima Branch Office	03 (5999) 5650	
	Shinagawa-City (excluding Higashi-Yashio)	Shinagawa Branch Office	03 (3495) 0351~2	
Nanbu Sewerage Office	Meguro-City	Meguro Branch Office	03 (3491) 7867~8	
13-26 Yukigayaotsukamachi, Ota-ku 03(5734)5031	Ota-City (excluding Reiwa Island)	Ota Branch Office	03 (3764) 3691	
00(0104)0001	Setagaya-City	Setagaya Branch Office	03 (5477) 2120~2	

^{*} Each local municipalities is in charge in the Tama region.

Core Facilities Reconstruction Offices

Office name	Address	Telephone
1 st Core Facilities Reconstruction Office	2-1-8 Kuramae, Taito-City	03 (3862) 8220
2nd Core Facilities Reconstruction Office	1-2-28 Konan, Minato-City	03 (5781) 8201
	1-2-40 Kamiochiai, Shinjyuku-City	03 (3366) 6948

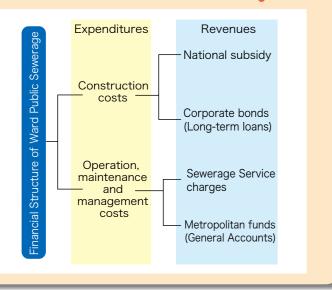
Water Reclamation Centers

Reclamation Center name	Address	Telephone	Reclamation Center name	Address	Telephone
Shibaura Water Reclamation Center	1-2-28 Konan, Minato-City	03 (3472) 6411	Shingashi Water Reclamation Center	3-1-1 Shingashi, Itabashi-City	03 (3930) 9731
Mikawashima Water Reclamation Center	8-25-1 Arakawa, Arakawa-City	03 (3802) 7997	Ukima Water Reclamation Center	4-27-1 Ukima, Kita-City	03 (3969) 2457
Sunamachi Water Reclamation Center	3-9-1 Shinsuna, Koto-City	03 (5632) 2180	Morigasaki Water Reclamation Center	5-2-25 Omori minami, Ota-City	03 (3744) 5981
Ariake Water Reclamation Center	2-3-5 Ariake, Koto- City	03 (5564) 2035	Kita-Tama Ichigo Water Reclamation Center	6-6 Koyanagicho, Fuchu City	042 (365) 4302
Nakagawa Water Reclamation Center	5-1-1 Nakagawa, Adachi-City	03 (3606) 2812	Minami-Tama Water Reclamation Center	1492 Omaru, Inagi City	042 (365) 4302
Kosuge Water Reclamation Center	1-2-1 Kosuge, Katsushika-City	03 (5680) 1993	Kita-Tama Nigo Water Reclamation Center	1-24-32 Izumi, Kunitachi City	042 (572) 7711
Kasai Water Reclamation Center	1-1-1 Rinkaicho, Edogawa-City	03 (5605) 9992	Asakawa Water Reclamation Center	1-236 Ishida, Hino City	042 (572) 7711
Ochiai Water Reclamation Center	1-2-40 Kamiochiai, Shinjuku-City	03 (3366) 6964	Tamagawa Joryu Water Reclamation Center	3-15-1 Miyazawacho, Akishima City	042 (545) 4120
Nakano Water Reclamation Center	3-37-4 Arai, Nakano- City	03 (3306) 6964	Hachioji Water Reclamation Center	501 Komiyamachi, Hachioji City	042 (343) 4120
Miyagi Water Reclamation Center	2-1-14 Miyagi, Adachi-City	03 (3919) 7458	Kiyose Water Reclamation Center	3-1375 Shitajuku, Kiyose City	042 (494) 1451

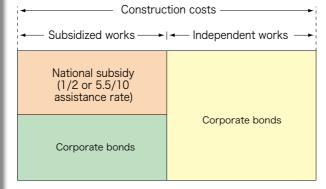
Counseling available in Japanese.

SEWERAGE in TOKYO 2025 12 Living and Sewerage

13 Finances



Sewerage in the Ward Area (Public Sewerage Business)


Finances

The sewerage business in the Tokyo 23-wards area is managed as local municipal enterprise. In principle, necessary costs for sewerage operations are paid for with independently acquired revenues, such as sewerage service charges from customers.

Financial Structure of Ward Public Sewerage Business

Sources of revenue for ward public sewerage

(1) Construction costs

Construction costs are the costs required to build pipes, pumping stations, and wastewater treatment plants.

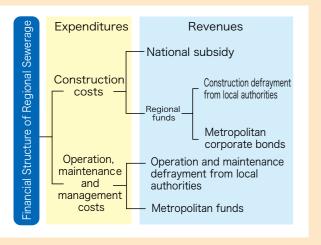
Construction costs are covered by national subsidies, corporate bonds (long-term loans), etc.

(2) Operation, Maintenance and Management costs

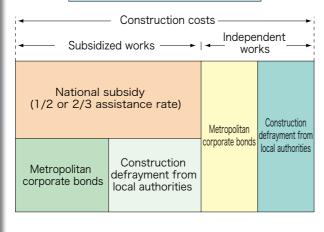
Operation, maintenance and management costs cover expenses necessary for maintaining sewerage facilities and operations, and paying for interest, etc.

The money collected from sewerage service charges is for sanitary treatment costs, and metroplitan funds (metropolitan tax, etc.) is for stormwater removal costs.

Principle of "private expense for sanitary sewage, public expense for stormwater" - Stormwater elimination: Covered by public expense (metropolitan tax. etc.) as whole society receives benefits


- Sanitary sewage treatment: Covered by indvidual payment as only specific users receive benefits

Sewerage in the Tama area (Regional Sewerage Business)

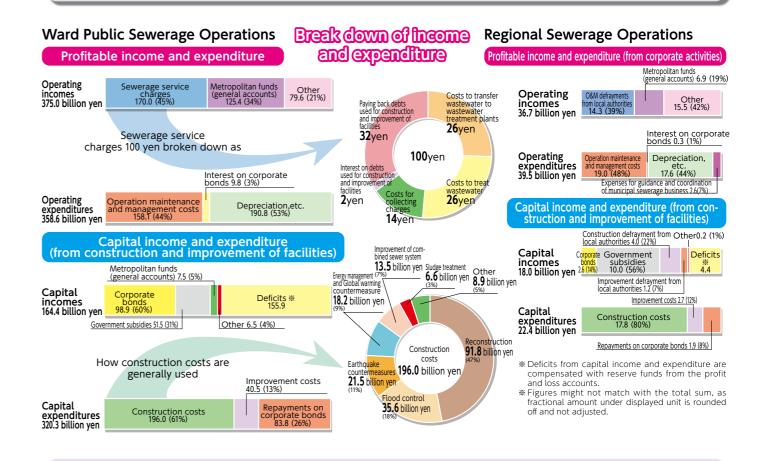

Finances

The sewerage business in Tama area is managed as a local municipal enterprise, with a promotion of the operation and construction costs defrayed from the appropriate local authorities.

Financial Structure of Regional Sewerage Business

Sources of revenue for regional sewerage

(1) Construction costs


Construction costs for regional sewerage system are covered by national subsidy, construction defrayment from local authorities, metropolitan corporate bonds, etc.

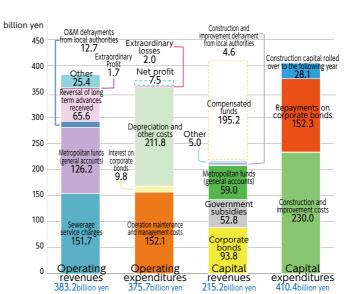
(2) Operation, Maintenance and Management costs

Costs for the operation, maintenance and management of regional sewerage system are collected from the local authorities. On the other hand, capital costs such as interest expences are covered by metropolitan funds, etc.

Outline of FY2025 budget

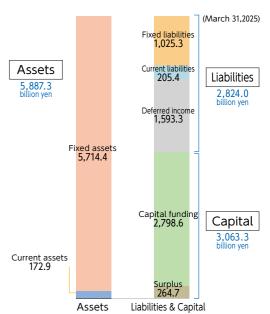
The 2025 budget was formulated with the fundamental policy of steadily advancing the projects outlined in the "Management Plan 2021" as its final year, while also proactively addressing new challenges.

Outline of FY2024 Financial Statement


The settled accounts of ward and regional sewerage business are as follows.

Regarding revenue expenditures and receipts, revenues were 383.2 billion yen and expenditures were 375.7 billion yen. Net profit was 7.5 billion yen.

Regarding capital expenditures and receipts, revenues were 215.2 billion yen (Excludes Compensated funds) and expenditures were 410.4 billion yen (including construction capital rolled over to the following year). There were capital deficits of 195.2 billion yen, but were compensated with reserve funds from the profit and loss accounts.


** Figures might not match with the total sum as fractional amount under displayed unit is rounded off and not adjusted.

Revenue /Capital Expenditures and Receipts (Ward and Regional total)

Consumption tax and local consumption tax are included in capital expenditures
 and receipts, but not in revenue expenditures and receipts.

Balance Sheet(Ward and Regional total)

Securing of income through effective utilization of assets, etc.

We will strive to achieve sustainable financial management through constant efforts to improve management efficiency, including the effective use of assets.

More specifically, we will strive to actively secure income by utilizing the upper space of sewerage facilities, renting or selling land and buildings, and utilizing sewage heat.

Case of dealings Shibaura Water Reclamation Center Utilization of the Upper Space Project

By lending the top section of the Shibaura Water Reclamation Center to a private company and owning office floors in the upper space building, we make a steady income.

(Overview of the upper space building)

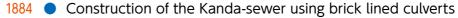
Completed: February 2015 No. of floors: 1 underground, 32 above ground Building height: approx. 151m

Total floor area: approx. 200,000m²

Constructed an basement floor storage facility to improve the combined sewer system

Shibaura Water Reclamation Center

Covered the wastewater treatment facility and using the top section as a park (left side of photograph)



Installed air conditioning system using sewage heat to upper space building "Shinagawa Season Terrace" provide heating and cooling for the entire upper space building

Storage facility in the basement of the upper space building

14 History of Sewerage in Tokyo

"The Tokyo City Sewerage Plan" is announced (April)

1913 • Stage 1 construction of the Tokyo Sewerage System Plan begins with District 2 (present-day Mikawashima treatment dis-

1922 Mikawashima Sewer Treatment Plant starts operations (March)

1943 • Start collecting sewerage service charges

1952 Term "sewer treatment plant" changed to "wastewater treatment plant (WWTP)"

1961 • Sludge treatment facility starts operations (in Shibaura)

1962 • Bureau of Sewerage is founded (April)

1964 • "The Tokyo Urban Sewerage Plan" is changed so sewer planning includes all 23 Wards (February)

 Ochiai WWTP starts operations. World's first park on top of a treatment facility opens (March)

 Mikawashima WWTP starts reusing treated water for industrial purposes (August)

1968 Tokyo Metropolitan Government starts construction on the Tama Regional Sewerage system, with service determined by the Tokyo Bureau of Sewerage and Metropolitan Govern-

1970 • Sewerage Law amended (statement on contributing to the water quality preservation in public water districts included)

1983 Nanbu Sludge Plant starts operations (October)

1984 • Flow of "Nobidome Yosui" is restarted using advanced

wastewater treatment water from the Tamagawa-Jouryu WWTP (August)

 Shinjuku Subcenter District Water Recycling Center starts operations using advanced wastewate treatment water from the Ochiai WWTP (October)

1986 • Sewerage Mapping and Information System (SEMIS) starts (April)

1987 • Wastewater heat recycling system (Urban heat) started at the Ochia WWTP (January)

Advanced wastewater treatment facility (high-rate filtration) starts at the Ochiai WWTP (April)

1988 Tokyo Rainfall Radar System for Tokyo Area (Tokyo Amesh 500) opens (June)

1992 • "The Master Plan for the Second-Generation Sewerage" is enacted (July)

1994 • "Kanda sewer" is designated as a Tokyo historical remains (March)

District air conditioning started in the Koraku 1 Chome area of Bunkyo Ward (July)

1995 • Sewered population in the Wards reaches approx. 100%. (March)

• Flow of the 3 urban channels are restarted using advanced wastewatertreatment water from the Ochiai WWTP (March)

1996 • "Sludgelight" light-weight aggregate material production facility starts operations at Nanbu Sludge Plant (April)

1998 • Sewerage Service Charges are revised (June)

2000 • The Bureau's character, "Earth-kun," debuted (September)

"Sewerage vision 2001 " is enacted (March)

2002 Tokyo Amesh internet site opens (April)

2003 • Former main pump house at the Mikawashima WWTP is designated as a Tokyo Cultural asset. (March)

▲ Planning Diagram of the Tokyo sewer (1908)

▲ Manhole and pipe construction in a sewer pipe behind Asakusa Park during the Taisho period (1912 to 1925)

"Kanda Sewer" designated as a Tokyo historical remains (1994)

2004 • The term "Wastewater Treatment Plant" is changed to "Water Reclamation Center" (April)

2005 SEMIS data is released on the internet (April)

2006 • Connecting pipes between Tamagawa Jouryu and Hachioji Water Reclamation centers is completed (April)

- 2011 To help rebuild the sewerage facilities after the Great East Japan earthquake, support teams were sent to Sendai in Miyagi prefecture, Urayasu and Katori in Chiba prefecture (from March)
- 2013 "Management Plan 2013" is enacted (February)
 - Opened the Important cultural property "Old Mikawashima Sewage Disposal Facilities "to the public (April)
 - Renewal opening of "Tokyo Sewerage Museum Rainbow" (April)
 - Opening of "Sewerage Technology Training Center" (October)
 - Commencement of operation of connection pipe(s) among Kita-Tama No.1 and Minami-Tama Water Reclamation Centers (October)
 - Formulating "Sewerage Emergency Plan for Storm Rainfall Counter-measures" (December)
- 2014 Completing construction of pump house at Nishi Nippori Line, Higashi Ogu Purification Center (May)
 - Formulating "Smart Plan 2014" (June)
- 2015 Grand opening of "Shinagawa Season Terrace "which is a private commercial building in Shibaura Water Reclamation Center (May)
 - Starting incorporation of Kitano treatment area in Hachioji City public sewerage system in the separate sewer area to Akikawa regional sewerage treatment area (July)
- 2016 "Management Plan 2016" was developed (February)
 - Dispatch of staff to Kumamoto City to support restoration of sewer facilities due to the Kumamoto Earthquake (April)

▲ Grand opening of "Shinagawa Season Terrace in Shibaura Water Reclamation Center (2015)

- Commencement of operation of connection pipe(s) among Kita-Tama No.2 and Asakawa Wate Reclamation Centers (April)
- Formulation of "Technical Research and Development Promotion Plan 2016" (December)
- Formulation of "Earth Plan 2017" (March)
- Release of smart phone edition of "Tokyo Amesh" (April)
 - Formulation of "Tokyo Sewerage PR Master Plan" (April)
- Published the Tokyo Sewerage PR Action Plan 2018 (March)
 - Signed a memorandum of understanding for collaborative research on Water Surface Control Device with the German company Steinhardt GmbH (May)
 - The 11th IWA World Water Congress and Exhibition was held in Tokyo (September)
- 2019 50th anniversary of the regional sewerage in Tokyo (April)
 - Renewal opening of the renovated Sewerage Technology Research and Development Center
- 2021 Completed incorporation of the Hachioji public sewerage Kitano treatment area into the regional sewerage Akigawa treatment area (January)
 - Formulation of "Management Plan 2021" (March)
 - Transfer of sewerage guidance administration from the Bureau of Urban Development to the Bureau of Sewerage (April)
 - Formulation of "Technical Research and Development Promotion Plan 2021" (September)
- The online tour of Ariake Water Reclamation Center is started (January)
 - The first "Sewerage Infrastructure Online Tour" is held at the Chiyoda trunk sewer construction site and Kuhonbutsu trunk sewer reconstruction construction site (January)
 - The former Mikawashima Sewage Disposal Station celebrated the 100th anniversary of its first operation (March)
 - "Sewerage flooding countermeasure plan 2022" is enacted (March)
 - Completion of Zenigamecho Building(Bldg.D) (April)
- 2023 Formlation of "Earth Plan 2023" (March)
- Dispatched staff members to support swift restoration of sewage facilities in Wajima City due to 2024 Noto Peninsula Earthquake(January)
 - Incorporation of Nishiki-cho treatment area in Tachikawa City public sewerage system in the separate sewer area to Kita - Tama No.2 regional sewerage treatment area (March)
- 2025 The Bureau's character "Earth-kun" was redesigned (September)

Facility Tours

Tokyo Sewerage Museum "Rainbow"

Tokyo Sewerage Museum "Rainbow", located in the Odaiba Ariake District, is a public relations facility for the Bureau of Sewerage Tokyo Metropolitan Government. It is an experience type facility that appeals the role and importance of sewer by providing the opportunities to experience the work inside the sewer, pumping station, central monitoring room, and water quality inspection room at "Rainbow Town" in the museum. These rooms are not allowed to enter in real facilities.

Entry fee : Free

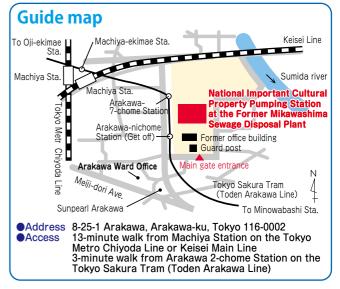
2-3-5 Ariake, Kotoward Ariake, the 5th Floor of Address

Ariake Water Reclamation Center

Telephone: 03-5564-2458

Closed

Mondays (open on holiday Mondays, closed the next day), and the year-end and New Year Holidays. Open daily throughout the summer (July 16-August 31)Open on Sewerage Day (September 10) and


Tokyo Citizens Day (October 1)

9:30 - 16:30 (entry until 16:00.) Hours

National Important Cultural Property Pumping Station at the Former Mikawashima Sewage Disposal Plant

Since the Pumping Station at the Former Mikawashima Sewage Disposal Plant has a high historical value as for the first modern sewage treatment plant in our country, it was designated as a National Important Cultural Property (Building) for the first time in the sewerage field on December 4, 2007. A series of well-preserved structures such as gate chambers and grit chambers still remain.

Entry fee: Free

Telephone: 03-6458-3940

Tuesdays, Fridays, and the year-end and New Year Closed day: Holidays

Opening hours: 9:00~16:00

How to use: Reservation is required for site visits

